
Programmer’s Manual
S500-904-01 Rev. B / January 2019

PS500-904-01B
S500-904-01B

 tek.com/keithley

Keithley Test Environment (KTE)

http://www.tek.com/keithley

Keithley Test Environment (KTE)

Programmer's Manual

© 2019, Keithley Instruments, LLC

Cleveland, Ohio, U.S.A.

All rights reserved.

Any unauthorized reproduction, photocopy, or use of the information herein, in whole or in part,

without the prior written approval of Keithley Instruments, LLC, is strictly prohibited.

These are the original instructions in English.

 All Keithley Instruments product names are trademarks or registered trademarks of Keithley

Instruments, LLC. Other brand names are trademarks or registered trademarks of their respective

holders.

Microsoft, Visual C++, Excel, and Windows are either registered trademarks or trademarks of

Microsoft Corporation in the United States and/or other countries.

Document number: S500-901-01 Rev. B / January 2019

Safety precautions

The following safety precautions should be observed before using this product and any associated instrumentation. Although
some instruments and accessories would normally be used with nonhazardous voltages, there are situations where hazardous
conditions may be present.

This product is intended for use by personnel who recognize shock hazards and are familiar with the safety precautions required
to avoid possible injury. Read and follow all installation, operation, and maintenance information carefully before using the
product. Refer to the user documentation for complete product specifications.

If the product is used in a manner not specified, the protection provided by the product warranty may be impaired.

The types of product users are:

Responsible body is the individual or group responsible for the use and maintenance of equipment, for ensuring that the

equipment is operated within its specifications and operating limits, and for ensuring that operators are adequately trained.

Operators use the product for its intended function. They must be trained in electrical safety procedures and proper use of the

instrument. They must be protected from electric shock and contact with hazardous live circuits.

Maintenance personnel perform routine procedures on the product to keep it operating properly, for example, setting the line

voltage or replacing consumable materials. Maintenance procedures are described in the user documentation. The procedures
explicitly state if the operator may perform them. Otherwise, they should be performed only by service personnel.

Service personnel are trained to work on live circuits, perform safe installations, and repair products. Only properly trained

service personnel may perform installation and service procedures.

Keithley products are designed for use with electrical signals that are measurement, control, and data I/O connections, with low
transient overvoltages, and must not be directly connected to mains voltage or to voltage sources with high transient
overvoltages. Measurement Category II (as referenced in IEC 60664) connections require protection for high transient
overvoltages often associated with local AC mains connections. Certain Keithley measuring instruments may be connected to
mains. These instruments will be marked as category II or higher.

Unless explicitly allowed in the specifications, operating manual, and instrument labels, do not connect any instrument to mains.

Exercise extreme caution when a shock hazard is present. Lethal voltage may be present on cable connector jacks or test
fixtures. The American National Standards Institute (ANSI) states that a shock hazard exists when voltage levels greater than
30 V RMS, 42.4 V peak, or 60 VDC are present. A good safety practice is to expect that hazardous voltage is present in any
unknown circuit before measuring.

Operators of this product must be protected from electric shock at all times. The responsible body must ensure that operators
are prevented access and/or insulated from every connection point. In some cases, connections must be exposed to potential
human contact. Product operators in these circumstances must be trained to protect themselves from the risk of electric shock. If
the circuit is capable of operating at or above 1000 V, no conductive part of the circuit may be exposed.

Do not connect switching cards directly to unlimited power circuits. They are intended to be used with impedance-limited
sources. NEVER connect switching cards directly to AC mains. When connecting sources to switching cards, install protective
devices to limit fault current and voltage to the card.

Before operating an instrument, ensure that the line cord is connected to a properly-grounded power receptacle. Inspect the
connecting cables, test leads, and jumpers for possible wear, cracks, or breaks before each use.

When installing equipment where access to the main power cord is restricted, such as rack mounting, a separate main input
power disconnect device must be provided in close proximity to the equipment and within easy reach of the operator.

For maximum safety, do not touch the product, test cables, or any other instruments while power is applied to the circuit under
test. ALWAYS remove power from the entire test system and discharge any capacitors before: connecting or disconnecting
cables or jumpers, installing or removing switching cards, or making internal changes, such as installing or removing jumpers.

Do not touch any object that could provide a current path to the common side of the circuit under test or power line (earth)
ground. Always make measurements with dry hands while standing on a dry, insulated surface capable of withstanding the
voltage being measured.

For safety, instruments and accessories must be used in accordance with the operating instructions. If the instruments or
accessories are used in a manner not specified in the operating instructions, the protection provided by the equipment may be
impaired.

Do not exceed the maximum signal levels of the instruments and accessories. Maximum signal levels are defined in the
specifications and operating information and shown on the instrument panels, test fixture panels, and switching cards.

When fuses are used in a product, replace with the same type and rating for continued protection against fire hazard.

Chassis connections must only be used as shield connections for measuring circuits, NOT as protective earth (safety ground)
connections.

If you are using a test fixture, keep the lid closed while power is applied to the device under test. Safe operation requires the use
of a lid interlock.

If a screw is present, connect it to protective earth (safety ground) using the wire recommended in the user documentation.

The symbol on an instrument means caution, risk of hazard. The user must refer to the operating instructions located in the
user documentation in all cases where the symbol is marked on the instrument.

The symbol on an instrument means warning, risk of electric shock. Use standard safety precautions to avoid personal
contact with these voltages.

The symbol on an instrument shows that the surface may be hot. Avoid personal contact to prevent burns.

The symbol indicates a connection terminal to the equipment frame.

If this symbol is on a product, it indicates that mercury is present in the display lamp. Please note that the lamp must be
properly disposed of according to federal, state, and local laws.

The WARNING heading in the user documentation explains hazards that might result in personal injury or death. Always read

the associated information very carefully before performing the indicated procedure.

The CAUTION heading in the user documentation explains hazards that could damage the instrument. Such damage may

invalidate the warranty.

The CAUTION heading with the symbol in the user documentation explains hazards that could result in moderate or minor

injury or damage the instrument. Always read the associated information very carefully before performing the indicated
procedure. Damage to the instrument may invalidate the warranty.

Instrumentation and accessories shall not be connected to humans.

Before performing any maintenance, disconnect the line cord and all test cables.

To maintain protection from electric shock and fire, replacement components in mains circuits — including the power
transformer, test leads, and input jacks — must be purchased from Keithley. Standard fuses with applicable national safety
approvals may be used if the rating and type are the same. The detachable mains power cord provided with the instrument may
only be replaced with a similarly rated power cord. Other components that are not safety-related may be purchased from other
suppliers as long as they are equivalent to the original component (note that selected parts should be purchased only through
Keithley to maintain accuracy and functionality of the product). If you are unsure about the applicability of a replacement
component, call a Keithley office for information.

Unless otherwise noted in product-specific literature, Keithley instruments are designed to operate indoors only, in the following
environment: Altitude at or below 2,000 m (6,562 ft); temperature 0 °C to 50 °C (32 °F to 122 °F); and pollution degree 1 or 2.

To clean an instrument, use a cloth dampened with deionized water or mild, water-based cleaner. Clean the exterior of the
instrument only. Do not apply cleaner directly to the instrument or allow liquids to enter or spill on the instrument. Products that
consist of a circuit board with no case or chassis (e.g., a data acquisition board for installation into a computer) should never
require cleaning if handled according to instructions. If the board becomes contaminated and operation is affected, the board
should be returned to the factory for proper cleaning/servicing.

Safety precaution revision as of June 2017.

Introduction .. 1-1

Contact information .. 1-1

Systems documentation ... 1-1

Overview .. 1-2

Conventions used in this manual ... 1-2

LPTLib command reference .. 2-1

Introduction .. 2-1

Categorized command lists .. 2-1
Combination commands ... 2-2
Dual-site commands ... 2-2
General commands ... 2-2
GPIB commands ... 2-3
Matrix commands .. 2-3
Measure commands .. 2-3
Pulse generator commands .. 2-4
Range commands ... 2-4
Scope card commands ... 2-5
Spectrum analyzer commands .. 2-5
Source commands .. 2-5
Timing commands ... 2-6

Using the LPTLib .. 2-6
Measuring ... 2-6
Sourcing and limits .. 2-7
Ranging ... 2-8
Matrix operations ... 2-9
Sweeping .. 2-10
Triggers ... 2-11
GPIB ... 2-12
Instruments and instrument drivers ... 2-12
Instrument and terminal IDs .. 2-15
Optimizing test sequences .. 2-16
Error handling .. 2-16

LPTLib command descriptions ... 2-24
addcon .. 2-24
adelay ... 2-25
asweepX ... 2-26
avgX .. 2-28
bmeasX ... 2-30
bsweepX ... 2-32
clrcon .. 2-33
clrscn ... 2-34
clrtrg .. 2-35
conpin ... 2-37
conpth ... 2-39
delay ... 2-40
delcon ... 2-41
devclr .. 2-42
devint .. 2-42
disable ... 2-44
enable ... 2-44

Table of contents

Table of contents Keithley Test Environment (KTE) Programmer's Manual

forceX .. 2-45
getlpterr ... 2-46
getstatus.. 2-47
imeast ... 2-48
insbind ... 2-49
intgX .. 2-50
kibdefclr ... 2-52
kibdefint ... 2-53
kibrcv ... 2-54
kibsnd .. 2-55
kibspl ... 2-56
kibsplw .. 2-57
limitX ... 2-57
lorangeX .. 2-59
measX ... 2-61
mpulse .. 2-63
pgu_current_limit ... 2-64
pgu_delay.. 2-64
pgu_fall ... 2-65
pgu_halt .. 2-66
pgu_height .. 2-66
pgu_init ... 2-67
pgu_load ... 2-67
pgu_mode ... 2-68
pgu_offset ... 2-69
pgu_period .. 2-69
pgu_range ... 2-70
pgu_rise .. 2-71
pgu_select ... 2-71
pgu_trig ... 2-72
pgu_trig_burst ... 2-72
pgu_trig_unit ... 2-73
pgu_width .. 2-74
pulseX ... 2-75
rangeX .. 2-77
rdelay .. 2-79
refctrl ... 2-79
rsa_close ... 2-80
rsa_detect_peaks .. 2-81
rsa_init .. 2-83
rsa_measure ... 2-83
rsa_measure_next .. 2-84
rsa_selftest .. 2-85
rsa_setup .. 2-86
rtfary .. 2-88
rttrigary .. 2-88
savgX .. 2-89
scp_close .. 2-90
scp_detect_peaks ... 2-91
scp_init .. 2-93
scp_measure ... 2-93
scp_measure_next .. 2-94
scp_selftest ... 2-95
scp_setup .. 2-96
searchX ... 2-97
setauto .. 2-100
setmode .. 2-101
setmode modifier tables .. 2-102
setXmtr .. 2-108
sintgX .. 2-109
site_disable ... 2-110

 Keithley Test Environment (KTE) Programmer's Manual Table of contents

site_enable .. 2-111
site_mapping ... 2-112
site_status ... 2-113
smeasX ... 2-114
ssmeasX ... 2-116
sweepX ... 2-118
trigXg, trigXl... 2-121
tstsel .. 2-124

 PARLib command reference ... 3-1

Introduction .. 3-1

How to use the library reference .. 3-2

Categorized subroutine lists ... 3-4
Bipolar subroutines ... 3-4
FET and JFET subroutines ... 3-4
Math and support subroutines ... 3-5
MOSFET subroutines .. 3-5
Resistors, diodes, capacitors, and special structure subroutines .. 3-6

Subroutine descriptions.. 3-6
beta1 ... 3-6
beta2 ... 3-8
beta2a ... 3-9
beta3a ... 3-11
bice ... 3-13
bkdn .. 3-14
bvcbo .. 3-15
bvcbo1 .. 3-17
bvceo .. 3-18
bvceo2 .. 3-19
bvces ... 3-21
bvces1 ... 3-22
bvdss ... 3-24
bvdss1 ... 3-25
bvebo .. 3-26
cap .. 3-28
deltl1 ... 3-29
deltw1 .. 3-30
ev .. 3-31
fimv ... 3-33
fnddat .. 3-34
fndtrg ... 3-35
fvmi ... 3-36
gamma1 .. 3-37
gd .. 3-39
gm ... 3-40
ibic1 ... 3-42
icbo ... 3-43
iceo ... 3-44
ices .. 3-45
id1 ... 3-46
idsat .. 3-48
idss .. 3-49
idvsvd .. 3-51
idvsvg .. 3-52
iebo ... 3-53
isubmx ... 3-55
kdelay .. 3-56

Table of contents Keithley Test Environment (KTE) Programmer's Manual

leak ... 3-57
logstp .. 3-58
rcsat .. 3-59
re ... 3-61
res ... 3-63
res2 ... 3-64
res4 ... 3-65
resv ... 3-66
rvdp ... 3-67
tdelay .. 3-68
tox ... 3-69
vbes .. 3-70
vf ... 3-71
vg2 .. 3-72
vgsat ... 3-74
vp .. 3-76
vp1 .. 3-78
vt14 ... 3-79
vtati ... 3-80
vtext .. 3-82
vtext2 .. 3-85
vtext3 .. 3-87

HVLib command reference .. 4-1

Introduction .. 4-1

How to use the library reference .. 4-1

High-Voltage Library commands .. 4-4
gate_charge .. 4-4
hv_bvsweep .. 4-6
hvcv_3term.. 4-8
hvcv_3term_basic ... 4-11
hvcv_comp .. 4-13
hvcv_genCompData .. 4-14
hvcv_genCompFreq .. 4-16
hvcv_getData .. 4-18
hvcv_intgcg ... 4-19
hvcv_measure ... 4-21
hvcv_storeData ... 4-23
hvcv_sweep .. 4-24
hvcv_sweep_basic .. 4-27
hvcv_test ... 4-29
hvcv_test_basic ... 4-32

KI_MultiSite command reference .. 5-1

Introduction .. 5-1
multi_site_clear_mapping() ... 5-1
multi_site_mapping() ... 5-3

Prober and prober driver command reference ... 6-1

Introduction .. 6-1
PrAbsMove.. 6-1
PrAdjustZHeight .. 6-2
PrAutoAlign ... 6-2
PrCassetteMap ... 6-2
PrCassetteMask .. 6-3

 Keithley Test Environment (KTE) Programmer's Manual Table of contents

PrCheckOptions .. 6-4
PrChuck .. 6-4
PrClearAll .. 6-5
PrClearPipeline ... 6-5
PrError .. 6-5
PrGetNxtWafer .. 6-6
PrGetProduct .. 6-6
PrGetWafer ... 6-7
PrInit .. 6-7
PrLoad .. 6-8
PrLoadProduct .. 6-8
PrLowerBoat ... 6-9
PrMove .. 6-9
PrNeedleClean .. 6-9
PrProfile .. 6-10
PrPutNxtSlot .. 6-10
PrPutWafer.. 6-11
PrQueryChuckTemp ... 6-11
PrQueryZHeight .. 6-12
PrReadId ... 6-12
PrRelMove .. 6-12
PrRelReturn .. 6-13
PrSerialPoll ... 6-13
PrSetChuckTemp .. 6-13
PrSetDiam ... 6-14
PrSetDieSize ... 6-14
PrSetFlat ... 6-14
PrSetMode .. 6-14
PrSetPipeline .. 6-15
PrSetQuadrant .. 6-15
PrSetRefDie .. 6-15
PrSetSlotStatus ... 6-16
PrSetTime ... 6-17
PrSetUnits ... 6-17
PrSetZHeight ... 6-17
PrSmifClamp ... 6-18
PrSmifLock .. 6-18
PrSmifStatus ... 6-19
PrStart ... 6-20
PrStatus .. 6-20
PrStop ... 6-21
PrUnLoad .. 6-21
PrWriteRead .. 6-21
PrWriteReadSRQ .. 6-22
PrZParams .. 6-24
PrZTravel .. 6-24

 Keithley data files (KDF) library command reference .. 7-1

Overview .. 7-1

Data logging routines ... 7-2
PutLot .. 7-2
PutWafer ... 7-3
PutSite .. 7-3
PutParam .. 7-4
PutParamList ... 7-5
EndLot ... 7-6
EndWafer .. 7-6
EndSite ... 7-6
GetLot ... 7-7

Table of contents Keithley Test Environment (KTE) Programmer's Manual

GetWafer ... 7-8
GetSite .. 7-9
GetParam .. 7-10
GetParamList .. 7-11
GetLotData .. 7-11
MatchParam2Limit .. 7-12
FileExist... 7-12
LotExist ... 7-12
GetStartTime ... 7-13
DeleteLot ... 7-13
DeleteWafer .. 7-13
DeleteSite.. 7-14
DeleteParam ... 7-14
DeleteLimitCode .. 7-15
DeleteLimit .. 7-15

Update comment routines .. 7-15
GetComment ... 7-15
PutComment ... 7-16

Update limits routines ... 7-16
GetLimitCode .. 7-16
GetLimit ... 7-16
PutLimit ... 7-17

Structure handling routines .. 7-17
AddNew[STRUCTURE] .. 7-17
CreateNew[STRUCTURE] .. 7-18
FindFirst[STRUCTURE] .. 7-19
FindLast[STRUCTURE] .. 7-19
FindNext[STRUCTURE] .. 7-20
FindPrev[STRUCTURE] .. 7-21
InsertNew[STRUCTURE] .. 7-22
Remove[STRUCTURE] ... 7-23
LimitExist ... 7-24

KTXE_RP zone-based testing command reference ... 8-1

Introduction .. 8-1
KTXE_RP_CleanUpWDF .. 8-1
KTXE_RP_CreateRandomWDF ... 8-1
KTXE_RP_CreateWPF ... 8-2
KTXE_RP_GetUsrArgs ... 8-2
KTXE_RP_RemoveWPF... 8-2

KTXE_AT result-based testing command reference.. 9-1

Introduction .. 9-1
KTXE_AT_alternate_site_site_end() ... 9-1
KTXE_AT_alternate_site_test_end() ... 9-1
KTXE_AT_AlterWWP() ... 9-2
KTXE_AT_CheckResWithLimits() ... 9-2
KTXE_AT_cleanup_site() .. 9-3
KTXE_AT_debug_print() ... 9-3
KTXE_AT_demo_data_func() ... 9-3
KTXE_AT_enable_kdf() .. 9-3
KTXE_AT_FindAltSite() .. 9-4
KTXE_AT_generate_val() ... 9-4
KTXE_AT_LogResultList() .. 9-5
KTXE_AT_more_sites_cur_wafer_site_end() ... 9-5
KTXE_AT_more_tests_curr_wafer_site_end() .. 9-5

Keithley Test Environment (KTE) Programmer's Manual Table of contents

KTXE_AT_more_tests_curr_wafer_wafer_begin() .. 9-5
KTXE_AT_more_tests_next_wafer_site_end() ... 9-6
KTXE_AT_wafer_begin() .. 9-6

Keithley User Interface Library command reference ... 10-1

Introduction .. 10-1
GetProgramArgs ... 10-1
InitUINew... 10-3
InputMsgDlg .. 10-4
LotDlg .. 10-4
OkCancelAbortMsgDlg .. 10-5
OkCancelMsgDlgDialog .. 10-5
OkMsgDlg ... 10-5
QuitUI .. 10-6
ScrollMsgDlg ... 10-6
ScrollMsgDlgClr .. 10-6
ScrollMsgDlgMsg .. 10-7
StatusDlg... 10-7
UpdateModelessDlgs .. 10-8
UpdateStatusDlg ... 10-8
VarMsgDlg .. 10-9
WfrIdsDlgDialog .. 10-10
WfrIdDlg .. 10-11
YesNoAbortMsgDlg ... 10-13
YesNoCancelMsgDlg .. 10-13
ContSkipAbortDlg .. 10-13
LBoxDlg .. 10-14

Data pool command reference .. 11-1

Introduction .. 11-1
dpAddData .. 11-1
dpAddPointer .. 11-2
dpAddArray ... 11-3
*dpGetDataPtr ... 11-3
*dpGetPointer .. 11-4
*dpGetArrayElement ... 11-4
dpRemoveData ... 11-5
dpPrintData ... 11-5
dpPrintAllData ... 11-6

Index ...Index- 1

In this section:

Contact information .. 1-1
Systems documentation ... 1-1
Overview .. 1-2
Conventions used in this manual ... 1-2

Contact information

If you have any questions after you review the information in this documentation, please contact your

local Keithley Instruments office, sales partner, or distributor. You can also call the corporate

headquarters of Keithley Instruments (toll-free inside the U.S. and Canada only) at 1-800-935-5595,

or from outside the U.S. at +1-440-248-0400. For worldwide contact numbers, visit the Keithley

Instruments website (tek.com/keithley).

Systems documentation

Documentation for your system is available at tek.com/keithley. Following is a list of documentation

for Keithley systems, including the document part numbers.

S530 Parametric Test System Administrative Guide (S530-924-01)

S530 Parametric Test System Reference Manual (S530-901-01)

S535 Wafer Acceptance Test System Administrative Guide (S535-924-01)

S535 Wafer Acceptance Test System Reference Manual (S535-901-01)

S540 Power Semiconductor Test System Administrative Guide (S540-924-01)

S540 Power Semiconductor Test System Reference Manual (S540-901-01)

Keithley Test Environment (KTE) Programmer's Manual (S500-904-01)

KIGEM Automation Software Reference Manual (KIGEM-901-01)

KIGEM Automation Software User's Manual (KIGEM-900-01)

Section 1

Introduction

http://www.tek.com/keithley
http://www.tek.com/keithley
http://www.tek.com/keithley
https://www.tek.com/keithley

Section 1: Introduction Keithley Test Environment (KTE) Programmer's Manual

1-2 S500-901-01 Rev. B / January 2019

Overview

This manual contains detailed descriptions of commands you can use to configure and control your

parametric test system.

The following command libraries are described in this manual:

Linear Parametric Test Library (LPTLib)

Parametric Test Subroutine Library (PARLib)

High-Voltage Library (HVLib; S540 systems only)

KI_MultiSite User Library (S535 systems only)

Prober and Prober Driver Library (PRBLib)

Keithley Data Files Library (KDF)

KTXE_RP Zone-Based Testing User Library

KTXE_AT Result-Based Testing User Library

Keithley User Interface Library (KUI)

Data Pool User Library

Conventions used in this manual

Throughout this manual, the following conventions are used when explaining the commands:

All LPTLib commands are case-sensitive and must be entered as lower case when writing

programs.

Parameters that are user-supplied are shown in monospace italic font.

A capital letter X shown in a command name indicates that you must select from a list of

replacement suffixes. Using the example forceX command, the X can be replaced with either a

v for voltage or i for current.

Keithley Test Environment (KTE) Programmer's Manual Section 1: Introduction

S500-901-01 Rev. B / January 2019 1-3

The following table contains a list of valid suffixes, the parameter each represents, and the units

used throughout the LPTLib for that parameter.

Suffix Parameter Unit

c Capacitance Farads

f Frequency Hertz

g Conductance Siemens

i Current Amperes

q Charge Coulombs

r Resistance Ohms

rh Relative humidity Percent

temp Temperature Degree Celsius

t Time Seconds

v Voltage Volts

Brackets [] are used to enclose optional arguments of a command.

Period strings (...) indicate additional arguments or commands that can be added.

Periods (.) indicate data not shown in an example because it is not necessary to help explain

the command.

In this section:

Introduction .. 2-1
Categorized command lists .. 2-1
Using the LPTLib .. 2-6
LPTLib command descriptions ... 2-23

Introduction

The Keithley line of semiconductor test systems uses function libraries to control the instruments in

the system. These libraries are called test control libraries. A test control library is the lowest level

software interface to a parametric tester.

The Linear Parametric Test Library (LPTLib) is one of the primary libraries that you can use with your

system. This section contains detailed information about using the LPTLib and documents the Linear

Parametric Test Library (LPTLib) commands.

Categorized command lists

The tables that follow contain all of the commands grouped by function, with a brief description of the

purpose of the command and a hyperlink to the full command description.

Section 2

LPTLib command reference

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-2 S500-901-01 Rev. B / January 2019

Combination commands

Command Description

asweepX (on page 2-26) Sweep with a user-defined force array (i, v).

bmeasX (on page 2-29) Block measurement; take a series of readings as quickly as
possible (i, v).

bsweepX (on page 2-32) Sweep and shutdown source if device meets trigger condition
(i, v).

clrscn (on page 2-34) Clear any sweep measurements.

clrtrg (on page 2-35) Clear any set triggers.

mpulse (on page 2-63) Force a pulse and measure voltage and current.

rtfary (on page 2-88) Return forced array after sweep.

savgX (on page 2-89) Average each point of associated sweep (i, v).

searchX (on page 2-97) Search for a specific current or voltage.

sintgX (on page 2-109) Integrate each point of associated sweep (i, v, c, g).

smeasX (on page 2-114) Measure each point of associated sweep (i, t, v).

sweepX (on page 2-118) Sweep a specified range of current or voltage.

trigXg, trigXl (on page 2-121) Trigger if a measurement is greater than a specific value
(i, t, v).

Trigger if a measurement is less than a specific value (i, t, v).

Dual-site commands

These commands are only compatible with S535 test systems.

Command Description

site_disable (on page 2-110) Disable dual-site mode for the specified siteid.

site_enable (on page 2-111) Enable dual-site mode for the specified siteid.

site_mapping (on page 2-112) Establish a new pin mapping between Site_0 and Site_1.

site_status (on page 2-113) Read the state of the specified site and places it in the state

variable.

General commands

Command Description

devclr (on page 2-42) Set all sources to a zero state.

devint (on page 2-42) Reset all instruments and clear the system.

getlpterr (on page 2-46) Get last LPTLib error since devint command.

getstatus (on page 2-47) Return operating status of instrument.

insbind (on page 2-49) Establish a cooperative relationship between two
instruments.

setmode (on page 2-101) Set operating mode.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-3

GPIB commands

Command Description

kibdefclr (on page 2-52) Clear instrument on devclr command.

kibdefint (on page 2-53) Clear instrument on delay command.

kibrcv (on page 2-54) Read device-dependent string.

kibsnd (on page 2-55) Send device-dependent command.

kibspl (on page 2-56) Serial poll an instrument.

kibsplw (on page 2-57) Synchronous serial poll an instrument.

Matrix commands

Command Description

addcon (on page 2-24) Add a connection.

clrcon (on page 2-33) Disconnect all crosspoint connections.

conpin (on page 2-37) Connect a pin or instrument terminal.

conpth (on page 2-39) Connect pins and instruments using a specific pathway.

delcon (on page 2-41) Remove specific matrix connections

Measure commands

Command Description

avgX (on page 2-28) Averages measurements of voltage, current, conductance, or
capacitance.

bmeasX (on page 2-29) Block measurement; make a series of readings as quickly as
possible.

intgX (on page 2-50) Integrates a measurement of voltage, current, conductance,
or capacitance.

measX (on page 2-61) Measure a voltage, current, conductance, or capacitance.

refctrl (on page 2-79) Enable or disable automatic reference measurements.

setXmtr (on page 2-108) Set the source to operate as a voltmeter or current meter.

ssmeasX (on page 2-116) Steady state measurement (i, v).

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-4 S500-901-01 Rev. B / January 2019

Pulse generator commands

These commands are only compatible with systems that have 4220-PGU pulse cards.

Command Description

pgu_current_limit (on page 2-64) Force a voltage or current.

pgu_delay (on page 2-64) Set the trigger delay time.

pgu_fall (on page 2-65) Set the fall time of the pulse.

pgu_halt (on page 2-66) Stop all the pulse channels.

pgu_height (on page 2-66) Set the peak-to-peak height of the pulse.

pgu_init (on page 2-67) Initialize communication with pulse card and set pulse
generator to default conditions.

pgu_load (on page 2-67) Set the load impedance of a pulse.

pgu_mode (on page 2-68) Set the pulse mode of the pulse generator.

pgu_offset (on page 2-69) Set the peak-to-peak height and DC offset of the pulse.

pgu_period (on page 2-69) Set the period of the pulse in seconds.

pgu_range (on page 2-70) Set the voltage range of a pulse generator channel.

pgu_rise (on page 2-70) Set the rise time of the pulse.

pgu_trig (on page 2-72) Trigger first pulse generator unit and output waveforms.

pgu_trig_burst (on page 2-72) Trigger a specified number of pulses.

pgu_trig_unit (on page 2-73) Trigger a specified pulse generator unit, or units, to output
waveforms.

pgu_width (on page 2-74) Set the width of the pulse.

Range commands

Command Description

lorangeX (on page 2-59) Define lowest range an instrument should use during
autorange operation (i, v).

rangeX (on page 2-77) Put a measuring instrument on a specific range (c, i, v).

setauto (on page 2-100) Re-enable autorange mode.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-5

Scope card commands

These commands are only compatible with systems that include 4200-SCP2HR scope cards.

Command Description

scp_close (on page 2-90) Disconnect communications to the scope card.

scp_detect_peaks (on page 2-91) Return frequencies in signal amplitude order.

scp_init (on page 2-93) Initialize the scope card to a default state.

scp_measure (on page 2-93) Measure frequency and amplitude of the strongest signal.

scp_measure_next (on page 2-94) Get the frequency and amplitude of next highest peak in
frequency spectrum.

scp_selftest (on page 2-95) Run an internal self-test of the scope card.

scp_setup (on page 2-96) Set the start, stop, and step frequencies of a scan.

Spectrum analyzer commands

These commands are only compatible with systems that include an RSA306B USB Spectrum

Analyzer. In Keithley systems, the RSA306B functions as a replacement for discontinued scope

cards. Spectrum analyzer capabilities may be added in the future.

Command Description

rsa_close (on page 2-80) Disconnect communications to the spectrum analyzer.

rsa_detect_peaks (on page 2-81) Return frequencies in signal amplitude order.

rsa_init (on page 2-83) Initialize spectrum analyzer to its default state.

rsa_measure (on page 2-83) Measure the frequency and amplitude of the strongest signal.

rsa_measure_next (on page 2-84) Return the frequency and amplitude of the next highest peak.

rsa_selftest (on page 2-85) Runs the specified self-test and returns a status.

rsa_setup (on page 2-86) Sets the start, stop, and step frequencies of a scan.

Source commands

Command Description

forceX (on page 2-45) Program a source instrument to output voltage or current at a
specified level.

limitX (on page 2-57) Limit an instrument to a set voltage or current other than the
instrument default.

pulseX (on page 2-75) Force voltage or current at a specified level for a specified
amount of time.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-6 S500-901-01 Rev. B / January 2019

Timing commands

Command Description

adelay (on page 2-25) Specify an array of delay points to use in a sweep.

delay (on page 2-40) Set a user-defined delay in a test sequence (in milliseconds).

disable (on page 2-44) Disable the timer.

enable (on page 2-44) Initialize and start the timer.

imeast (on page 2-48) Read the timer (immediate measure time).

rdelay (on page 2-79) Set a user-defined delay (in seconds).

Using the LPTLib

The following topics describe how to use the Linear Parametric Test Library (LPTLib).

Measuring

The most important part of a parametric tester is its ability to make measurements. There are three

types of measurements you can make with the Linear Parametric Test Library (LPTLib):

Ordinary measurements (on page 2-6)

Averaged measurements (on page 2-6)

Integrated measurements (on page 2-6)

The type of measurement you make depends on the type of noise you are trying to eliminate from

your measurement.

Ordinary measurements

Ordinary measurements are made with the measX LPTLib command. This is the fastest single-point

measurement you can make. Use this type of measurement when speed is most important or when

noise is not significant.

Averaged measurements

Averaged measurements are made with the avgX LPTLib command. The avgX command makes an

averaged measurement by making several single-point measurements and averaging them.

Averaged measurements reduce the effects of random noise.

Integrated measurements

Integrated measurements are made with the intgX LPTLib command. Integrated measurements

examine the signal over a longer period and reduce the effects of AC noise. Like averaged

measurements, integrated measurements reduce the effects of random noise, but they also reject

noise with a period that is an integer multiple of the integration period or aperture.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-7

You can change the integration aperture of some instruments. Integration apertures are commonly

defined in units of power line cycles (PLCs). A PLC is the time it takes for one complete AC cycle of

the main power supplied to the system. The default integration aperture is one PLC. For 60 Hz power,

one PLC is 16.667 ms; for 50 Hz, one PLC is 20 ms. An integration aperture of 0.1 PLC on a 60 Hz

system is (0.1)(16.667 ms) = 1.667 ms.

A common mistake is to try to use large aperture integrated measurements to eliminate the effect of

random noise. Although noise can be reduced this way, it is typically more productive to use an

averaged measurement. The integrated measurement is generally as stable, but averaged

measurements usually can be made more quickly than integrated measurements.

This is especially true when making autoranged measurements. When an instrument makes

autoranged measurements, all of the measurements it makes when determining the best range are

done at the same aperture. If the instrument discards any measurements because they are on a

suboptimal range, time is wasted if they are made with a large aperture. With averaged

measurements, the instrument typically spends less time finding the optimal range.

Some instruments allow combinations of integration and averaging by allowing the behavior of one or

more of the three types of measurements to be altered temporarily. In this case, the instrument is

capable of performing an averaged integrated measurement.

Sourcing and limits

Source instruments normally force 0.0 by default. You can change the source value with the forceX

LPTLib command. All current and voltage sources restrict the complementary function to the one they

are sourcing.

Current is the complementary function of voltage, and voltage is the complementary function of

current. For example, when a voltage source is forcing voltage, it restricts how much current it allows

to flow (including when it is sourcing its default 0.0 value). This is called the limit (also known as the

compliance limit). A current limit is used for a voltage source and a voltage limit is used for a current

source.

When this limit is reached, the source reduces its force value. In the preceding example, when the

voltage source reaches the limit, it reduces the voltage being forced so that the current does not

exceed the limit. When this happens, the source is said to be in compliance. For this example, the

voltage source is in current compliance.

All sources have default limits, but you can change limit values with the limitX LPTLib command.

When there are active sources in a test sequence, you can reset all source levels to the default of 0.0

with the devclr LPTLib command. This resets the source level only. If a limit or any other instrument

setting has been changed from its default, it is not reset by the devclr LPTLib command.

To reset all instrument settings to their initial or default state, use the devint LPTLib command. The

devint command also clears all sources by internally calling the devclr command before resetting

all instruments to default settings.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-8 S500-901-01 Rev. B / January 2019

Ranging

The default mode of operation for all instruments is to automatically select the best range available for

sourcing and for measuring. This is known as autoranging. For sources, the range is picked when the

source value is changed. When measuring, the instrument may need to make several measurements,

each on a different range, until it finds the best range for the measurement.

Autoranged measurements can take much longer to make than fixed-range measurements because

the instrument may need to change ranges and make extra measurements before finding the correct

range. There are two features that instruments may support that improve the performance of

autoranged measurements. These are smart ranging and sticky ranging.

Smart ranging

An instrument without smart ranging successively upranges or downranges until the correct range is

found. For instruments with many ranges, a large change in signal causes the instrument to scan

through many ranges before finding the correct one. With smart ranging, the instrument uses the

measured value on the incorrect range to try and determine what the correct range will be. If the

measurement is really small, the instrument skips ranges and tries to downrange directly to the

correct range.

When upranging, the instrument upranges once. If it is still on the wrong range it goes straight to its

highest allowable range (source limits affect the highest allowable range). If this range is too large, it

uses the smart method of downranging to the correct range. Note that as instrument technologies

evolve, new instruments may actually use variations of this technique.

Sticky ranging

The other special ranging feature an instrument may have is sticky ranging. Often an instrument is

required to make many measurements on the same range. If the instrument starts on the default

range each time (for example, the highest allowable range) and goes through its autorange algorithm

for each requested measurement, the instrument must make extra measurements to get to the

correct range each time.

Sticky ranging causes the instrument to stay on the last range it was on. If the next measurement it

must make is on this range, the instrument only makes one measurement. This feature is most useful

during sweeps where most of the measurements are on the same range. Sticky ranging also

coordinates with fixed ranging. When an instrument is put on a fixed range and then switched back to

autorange, the instrument starts autoranging on that range.

Settling time

Another issue associated with range changes is settling time. The lowest ranges of an instrument can

have significantly larger settling times than the higher ranges. Both sticky ranging and smart ranging

help with this problem.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-9

You may want autoranged measurements but do not care about resolution once the signal falls below

a certain value. In this case, having an autoranged measurement go to the lowest range an

instrument has wastes time.

You can use the lorangeX LPTLib command to specify the lowest range an instrument uses when

autoranging. The instrument then gives you the resolution you need without wasting time trying to

make a measurement on a more accurate range.

Fixed ranging

Often, autoranged measurements are not required. If the range on which a measurement will be

made is known before the measurement is made, fixed ranging can be used. You can select a fixed

range on an instrument with the rangeX LPTLib command. Fixed-range measurements are made

more quickly than autoranged measurements.

When making fixed range measurements, you must be careful that the range is not set too low. If the

range is set too low, the signal may be too large to measure on the specified range. If the signal is

larger than the full scale of the range, the instrument goes into an overrange condition. When this

happens, the instrument returns a special value to indicate the error instead of the actual

measurement.

Range limits

When an instrument is on a range lower than its compliance limit, it limits at full scale of range. For

example, a voltage source that is fixed on the 10 µA current measurement range limits at 10 µA, even

though the compliance may be programmed to a larger value. Because a fixed-range measurement

will not automatically uprange, it cannot resolve this artificial compliance. This is known as range limit.

This can affect measurements made on another instrument because the source is not forcing the

programmed value. The system automatically resolves problems like this, but only for instruments

that are on autorange.

Matrix operations

Most instruments require their terminals to be connected to a device under test (DUT) before they can

be used. This involves the use of matrix commands. A typical test sequence consists of making

connections, sourcing, measuring, and then calling the devint LPTLib command to restore the

entire system, including the matrix, to its default condition.

The command most used to make connections is the conpin LPTLib command. Normally, several

conpin calls are made together at the beginning of a test sequence. These grouped conpin calls

are called a conpin sequence.

If you need to clear all matrix connections in the middle of a test sequence, you can call the clrcon

LPTLib command to do this explicitly. If you start a new pin connection sequence in the middle of a

test sequence, the conpin command automatically performs a clrcon command before making any

new connections.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-10 S500-901-01 Rev. B / January 2019

To make new connections or remove connections in the middle of a test sequence, use the addcon

LPTLib and delcon commands. These commands do not clear the matrix like the conpin command

does.

To prevent damage to matrix relays, all switching is done with sources off. The addcon, delcon, and

clrcon commands internally call the devclr LPTLib command before opening or closing any relays.

The devint command does not directly call the devclr command, as described in the sourcing

section above. It calls the clrcon command, which then calls the devclr command as part of its

normal processing.

Sweeping

The Linear Parametric Test Library (LPTLib) can automatically perform multiparameter sweeps.

Sweeps are more efficient than programmatically changing the source value on an instrument and

performing a set of individual measurements.

To set up a sweep, use the smeasX, sintgX, and savgX LPTLib commands to populate a

measurement scan table. Each call to one of these commands adds an entry to the table. You can

then use the sweepX LPTLib command to step a source through a range of source values. At each

step, a measurement is made for each entry in the measurement scan table.

Before sweeping the source, the source range is automatically set to the range appropriate for the

largest source value in the sweep. This prevents a source range change in the middle of the sweep.

When ranging, the absolute value of the source value is used to determine range. For example, if a

voltage source is swept from –10 V to +0.5 V, the range appropriate for ±10 V (the 10 V range) is

used.

After the sweep has completed, the measurement scan table is not cleared. If another sweep is

performed, more measurements are made for each entry in the measurement scan table, which may

cause unexpected results. If you do not want this to happen, call the clrscn command between

sweeps to rebuild the measurement scan table before another sweep is performed.

Calling the smeasX, sintgX, or savgX command does not clear the measurement scan table. The

new entries are added to the existing measurement scan table. The measurement scan table is

automatically cleared when the devint LPTLib command is called, but it can be explicitly cleared by

calling the clrscn LPTLib command.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-11

Triggers

Several Linear Parametric Test Library (LPTLib) commands use triggers. Triggers are Boolean

conditions, but to fully understand them you must understand how the LPTLib processes them.

Triggers are registered with the system using the trigXY LPTLib commands. This creates an entry

in a trigger table. During processing of multiple LPTLib commands, the system evaluates the triggers.

This is done by examining each entry in the trigger table to see if its condition is true or false. If any of

the triggers are true, the trigger evaluation is true. Based on the evaluation of the triggers, the LPTLib

command may alter how it continues processing.

The trigger table is cleared automatically when the devint LPTLib command is called. Note that

previous entries are not cleared by adding a new trigger. The new trigger is appended to the existing

trigger table and it is used with the rest of the trigger table entries the next time triggers are evaluated.

This is a common mistake among even experienced LPTLib users. The trigger table can be cleared

explicitly by calling the clrtrg LPTLib command.

Most triggers are set up to monitor when a measurement on a specified instrument goes above or

below a specified value. For example, calling trigvg (SMU1, 2.0) registers a trigger that is true

when the voltage measured by SMU1 goes above 2 V.

When evaluating this type of trigger, the system uses an existing measurement if possible. It requests

a fresh reading from the triggering instrument if the existing measurement is of a different type (for

example, measi instead of intgi). It then compares it to the threshold value. This means that when

evaluating triggers, the system may make a separate measurement for each entry in the trigger table.

For Test Script Processor (TSP®) instruments (2636, 2461-SYS, 2657A, and DMM7510), triggering

has been simplified to use the sweep measurement function when possible. For routines that do not

have sweep measurements defined, the measurement is made using the measX command of the

triggering instrument.

For non-TSP instruments (in older systems with a 2410), you can use the setmode command to

force the LPTLib to use the intgX or avgX command of the triggering instrument instead. To do this,

all triggering instruments must support the intgX or avgX command.

This type of trigger uses real numbers for the comparison. You can use the setmode command to

make all triggers evaluate based on the absolute value of the measurement instead of the polarized

measurement. You can clear this setmode option and the other triggering options mentioned above

using the clrtrg and devint commands.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-12 S500-901-01 Rev. B / January 2019

GPIB

The kibXXX commands allow you to control general purpose interface bus (GPIB) instruments that do

not have Linear Parametric Test Library (LPTLib) drivers. Because the instruments controlled this way

do not have drivers that automatically interact with matrix control, you must clear all sources before

performing any matrix operations.

You must also ensure that the instruments are returned to their default state at the end of a test

sequence. You can use the kibdefclr and kibdefint LPTLib commands to do this. These

commands allow you to define strings that are sent to GPIB instruments any time the system is

executing a devclr or devint LPTLib command.

Failure to clear active GPIB-based sources before a matrix operation is performed could

result in damage to the matrix.

Because of the slow speed of GPIB communication and the order in which instruments are cleared,

do not use GPIB instruments when performing bsweepX LPTLib tests.

Multiple GPIB interfaces are not currently supported. However, future systems may support multiple

interfaces.

Instruments and instrument drivers

The Linear Parametric Test Library (LPTLib) provides the lowest level of instrument control available,

though it does not control the hardware directly. Instead, LPTLib relies on hardware drivers to control

instruments.

Each of these drivers only supports LPTLib commands appropriate for their function. For example,

the driver for a voltmeter would not support the function to measure frequency. The following tables

provide information about which LPTLib commands are supported by the driver for each type

instrument.

Commands supported by all drivers

The following commands are supported by all drivers:

 delay

 devint

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-13

Commands supported for SMUs

The following commands are supported by source-measure unit (SMU) drivers:

 adelay

 asweepX

 avgi, avgv (avgX)

 bmeasX

 bsweepX

 clrscn

 clrtrg

 devclr

 forcei, forcev (forceX)

 getstatus

 insbind

 intgi, intgv (intgX)

 limitX

 lorangeX

 measi, measv (measX)

 pulseX

 rangei, rangev (rangeX)

 refctrl

 rtfary

 rttrigary (26xx only)

 savgi, savgv (savgX)

 searchX

 setauto

 setimtr (26xx only)

 setmode

 setvmtr (26xx only)

 sintgi, sintgv (sintgX)

 smeasi, smeasv (smeasX)

 sweepi, sweepv (sweepX)

 trigig, trigtg, trigvg

(trigXg)

 trigil, trigtl, trigvl

(trigXl)

Commands supported for CVUs

The following commands are supported by capacitance-voltage unit (CVU) drivers:

 avgc, avgcg, avgg (avgX)

 clrscn

 devclr

 forcev

 getstatus

 insbind

 intgc, intgcg, intgg

(intgX)

 measc, meascg, measg

(measX)

 rangec

 rangei

 rtfary

 setauto

 setmode

 smeasc

 smeasg

 sweepv

Commands supported for the RSA306B spectrum analyzer

The following commands are supported for the RSA306B USB Spectrum Analyzer.

In Keithley systems, the RSA306B functions as a replacement for discontinued scope cards.

Spectrum analyzer capabilities may be added in the future.

 rsa_close

 rsa_detect_peaks

 rsa_init

 rsa_measure

 rsa_measure_next

 rsa_selftest

 rsa_setup

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-14 S500-901-01 Rev. B / January 2019

Commands supported for PGUs

The following commands are supported by pulse-generator unit (PGU) drivers:

These commands are deprecated, but are listed here for users with older systems.

 pgu_current_limit

 pgu_delay

 pgu_fall

 pgu_halt

 pgu_height

 pgu_init

 pgu_load

 pgu_mode

 pgu_offset

 pgu_period

 pgu_rise

 pgu_range

 pgu_select

 pgu_trig

 pgu_trig_burst

 pgu_trig_unit

 pgu_width

Commands supported for scope cards

The following commands are supported by scope card (SCP) drivers (systems with 4200-SCP2HR

scope cards):

 scp_init

 scp_setup

 scp_measure

 scp_measure_next

 scp_detect_peaks

 scp_selftest

 scp_close

Commands supported for systems

The following commands are supported by system drivers:

 setmode tstsel devint

Commands supported for DMMs

The following commands are supported by digital multimeter (DMM) drivers:

 avgi, avgv (avgX)

 clrtrg

 devclr

 getstatus

 intgi, intgv (intgX)

 lorangeX

 measi, measv (measX)

 rangei, rangev (rangeX)

 refctrl

 savgv (savgX)

 setauto

 setmode

 sintgv (sintgX)

 smeast, smeasi,

smeasv (smeasX)

 trigtg, trigvg

(trigXg)

 trigtl, trigvl

(trigXl)

 tstsel

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-15

Commands supported for switch mainframes

The following commands are supported by switch mainframe drivers:

 addcon

 clrcon

 conpin

 conpth

 delcon

 setmode

 tstsel

Commands that support timer functions

The following commands support timer functions:

 disable enable imeast

Commands for USB instruments not supported by systems drivers

The following commands control USB instruments that are not supported by S530, S535, or S540

drivers:

 kibdefclr

 kibdefint

 kibsnd

 kibrcv

 kibspl

 kibsplw

Instrument and terminal IDs

The Linear Parametric Test Library (LPTLib) uses instrument identification codes to refer to the

instruments in the system. An instrument identification code is an integer value. This manual never

refers to the actual numbers used to identify the instruments. Instead, it refers to the mnemonic codes

that you can use in your programs to refer to the various instruments.

An instrument ID typically consists of a mnemonic string that identifies the type of instrument and a

number that specifically identifies an individual instrument of this type. For example, SMU2 is an

instrument ID that refers to the second source-measure unit (SMU) in the system.

This manual often refers to a SMU instrument as SMUn (the n represents a number), however, it does

not matter which SMU is being used. Anywhere an instrument ID is required by a library command, a

specific instrument ID (mnemonic) can be used directly or as an integer variable that was assigned

the value of an instrument ID. For example, SMUn can indicate SMU1, SMU2, SMU3, and so on.

Most instruments have terminals that must be connected to your circuit before the instrument can be

used in a test sequence. For example, a simple voltmeter has two terminals: A high terminal and a

low terminal. The terminals of an instrument also have identification codes similar to the instrument

IDs; in some places an instrument ID and terminal ID can be used interchangeably.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-16 S500-901-01 Rev. B / January 2019

In some cases, specific terminal IDs are associated with the instrument. Where appropriate, they are

listed in the instr_id parameter description. There are also some special instrument IDs and

terminal IDs that the system recognizes but are not associated with any specific instrument.

Special instrument IDs:

KI_SYSTEM: This refers to the system itself. Note that KI_SYSTEM is a special

pseudo-instrument and the instrument ID does not refer to the collection of instruments in the

system but to the pseudo-instrument itself.

Special terminal IDs:

CHUCK: The chuck connection. The sense pin option cannot be used with CHUCK. Use CHUCKM

instead.

KI_EOC: This is a special terminal ID used to terminate a list of terminals in a connection

subroutine. This value is 0; you can use the value 0 instead of KI_EOC.

Optimizing test sequences

There are several things you can do to optimize your system for faster operation.

Fixed range versus autorange measurements

Use fixed-range measurements whenever possible. Depending on the measurement, this can

significantly increase the speed of the test sequence.

Fix-range trigger instruments

When you are using triggers, you should fix-range the triggering instrument with the value of the

trigger. If you do not do this, the trigger command forces a measurement to be made after each

sweep point, and the measuring instrument autoranges. Autoranging noticeably increases the total

test execution time.

Use combination commands

Do not use individual forceX and measX LPTLib commands to sweep a set of points. Use the

sweepX LPTLib command, which incurs significantly less overhead.

Error handling

Error handling is done on two levels. The first is Linear Parametric Test Library (LPTLib) command

return values. The other is error message processing performed by the Keithley Test Environment

(KTE) tools. For more information about how the KTE tools process error messages, see the

documentation for the tool you are using.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-17

Calling the getlpterr function

You can also use the getlpterr LPTLib function to get error values. It returns the first error

encountered since the last devint LPTLib command.

Error messages

There are two parts to an error message generated by Keithley test systems. These are the error

header and the error text. An example error message looks like the following:

2017/03/01 12:00 - E0101

Argument #2 is not a pin in the current configuration.

In this example 2017/03/01 12:00 - E0101 is the error header and Argument #2 is not a pin

in the current configuration. is the text. The error header provides information about the error

and the error text explains the cause of the error.

The first part of the header is the date and time the error occurred. Next is the letter E followed by the

error number. In the example, the error number is 101.

Special error values returned

The Linear Parametric Test Library (LPTLib) commands may return error values in place of actual

measurement values. These values are summarized in Error definitions. For example, the following

Keithley Interactive Test Tool (KITT) macro will generate a matrix error before trying to make a

measurement.

conpin(SMU1, 999, 0);

measv(SMU1,V);

Rather than a true voltage reading, the actual value returned in the measv variable is 1E+23. This

indicates that no measurement was made due to an error. In this case, it was the matrix connection

error.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-18 S500-901-01 Rev. B / January 2019

Result values indicating an error

The following table contains errors that are returned as measured results (not as Linear Parametric

Test Library (LPTLib) return status codes). Each value has a specific meaning. If one of these values

is returned from any measurement subroutine, the test was not performed and action is required by

the Keithley programmer or manager.

Table: Errors

Value Description

1.0E22 Instrument Overrange.

Measurement instrument performed the measurement, but the resulting value was inappropriate
for the range specified. This is either from selecting the wrong range for manual ranging or from
autoranged measurement on a dynamically changing signal (slowly charging device).

1.0E23 Measurement Not Performed.

If an error causes a measurement not to be performed, this result is returned. Previously, if a
measurement was not taken, nothing was returned, so the result available to the user (from the
execution of the test sequence) was the previous reading. This could be confusing. Now,
whenever possible, it will return this error value as a default value.

1.138E26 Site Inactive.

Measurement not performed because site was inactive.

2.0E22 Current Overload.

Measurement was not performed due to a shutdown condition. The source went into a current
overload condition and shutdown.

3.0E22 Oscillation Detection.

Instrument was forced into a shutdown state because oscillations were detected at the
instrument.

4.0E22 Thermal Shutdown.

Instrument is dissipating too much heat. The instrument is shutdown to keep from
self-destructing.

5.0E22 SOA Exceeded.

The instrument is designed to operate within the Safe Operating Area. If the programming
conditions exceed this area, this error value is returned.

6.0E22 Pulse Width Too Short.

The specified pulse width is less than the minimum specified for the instrument.

7.0E22 Source Limit.

Measurement was not performed because source was in limit.

Error messages

This section lists all of the error messages. The error number, error description, and additional

remarks are given for each error. Note that Linear Parametric Test Library (LPTLib) commands return

negative values, but the messages indicate them as positive values.

3 LPT_NOCOMCHAN

Message: **This is a host-side only error. No message will be generated by the tester.

Remarks: Linear Parametric Test Library (LPTLib) calls may only be sent after a successful call to

the tstsel command. Make sure the tstsel command is called before any other LPTLib

command.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-19

5 SYS_MEM_ALLOC_ERR

Message: Memory allocation failure.

Remarks: The tester does not have enough memory for the Keithley system software to run correctly.

20 LPT_PREVERR

Message: Command not executed because a previous error was encountered.

Remarks: There was an error encountered during a test sequence. All Linear Parametric Test Library

(LPTLib) commands after that point will generate this error. Correct the problem in the test sequence

causing the first error.

21 LPT_FATAL

Message: Tester is in a fatal error state.

Remarks: The tester is in a state requiring user attention. Correct the problem requiring attention.

22 LPT_FATALINTEST

Message: Fatal condition detected while in testing state.

Remarks: The tester entered a fatal state while a test sequence was in progress. Results generated

during this test sequence may not be valid.

24 LPT_TOMANYARGS

Message: Too many arguments.

Remarks: A Linear Parametric Test Library (LPTLib) command has passed more arguments than it

can handle. Reduce the number of arguments by trying to split the call into two or more smaller calls.

100 MX_INVLDCNT

Message: Invalid connection count, number of connections passed was NNN.

Remarks: The matrix driver could not determine what to connect because there were not enough

terminal IDs or pins specified. This is usually caused by passing -1 for all but one argument to a

matrix function.

101 MX_NOPIN

Message: Argument #NNN is not a pin in the current configuration.

Remarks: A request was made to make a connection to a pin that does not exist.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-20 S500-901-01 Rev. B / January 2019

102 MX_MULTICON

Message: Multiple connections on XXX.

Remarks: Certain terminals can only be connected to one pin at a time. An attempt was made to

connect this terminal to more than one pin at a time.

109 MX_ILLGLTSN

Message: Illegal test station: NNN.

Remarks: An internal system software error has occurred.

113 MX_NOSWITCH

Message: There are no switching instruments in the system configuration.

Remarks: The system did not detect any matrix hardware during system configuration.

114 MX_ILLGLCON

Message: Illegal connection.

Remarks: An attempt was made to make a connection that physically cannot be made or is

disallowed.

122 UT_INVLDPRM

Message: Illegal value for parameter #NNN.

Remarks: An invalid value was passed as the NNNth argument to a Linear Parametric Test Library

(LPTLib) command.

126 UT_NOURAM

Message: Insufficient user RAM for dynamic allocation.

Remarks: The system could not allocate memory for user data. This could be caused by sweeps with

an unusually large number of steps or by large sweeps that measure too many parameters.

129 UT_TMRIVLD

Message: Timer not ENABLED.

Remarks: Time measurements can only be made on a timer when the timer is enabled.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-21

137 UT_INVLDVAL

Message: Invalid value for modifier.

Remarks: An invalid option was used for the setmode or getstatus command.

152 CB_BADFUNC

Message: Function not supported by XXX (NNN).

Remarks: The driver for this instrument does not support the Linear Parametric Test Library (LPTLib)

command used.

156 CB_NOFILE

Message: Configuration file does not exist: XXX.

Remarks: A required configuration file is missing.

157 CB_FORMAT

Message: Configuration file format error. File: XXX, Section: XXX, Key: XXX.

Remarks: A system configuration file has a missing entry or an entry that was formatted in an

unexpected way.

162 CB_INVLDERROR

Message: Invalid error number: NNN.

Remarks: The logging .ini file has a format error.

163 CB_INVLDEVENT

Message: Invalid event number: NNN.

Remarks: The logging.ini file has a format error.

166 CB_INSNOTREC

Message: Instrument with model code XXX is not recognized.

Remarks: An instrument is not recognized by the system. The instruments may be misread over the

170 CB_INITFAIL.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-22 S500-901-01 Rev. B / January 2019

173 CB_MULTITIMER

Message: System supports only four timer(TIMER1, ..., TIMER4).

Remarks: The LPT function was expecting TIMER1, TIMER2, TIMER3, or TIMER4 for the instr_id

parameter, but some other instrument ID was sent (for example, TIMER5 or SMU1).

194 MX_INVLDTRM

Message: Invalid terminal: XXX.

Remarks: The terminal specified is invalid for the command.

233 FM_NOCON

Message: Cannot force when not connected.

Remarks: The instrument must be connected to a device under test (DUT) before it can be used.

455 ECP_PROTOVER

Message: Protocol version mismatch.

Remarks: The application controller software version and the tester software version do not match.

Either the system software was not installed correctly, or the application controller is being used to

control an older or newer tester not intended to be used with this application controller.

601 SYS_INTERNAL_ERR

Message: System software internal error.

Remarks: An internal system software error has occurred.

610 SYS_SPAWN_ERR

Message: Could not start XXX.

Remarks: An internal system software error has occurred.

611 SYS_NETWORK_ERR

Message: Network error.

Remarks: The system is having problems communicating over the network. Make sure that all

network connections are secure, all network cables are intact, and any network routers are

functioning properly.

612 SYS_PROTOCOL_ERR

Message: Protocol error.

Remarks: An internal system software error has occurred.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-23

650 TAPI_BADCHANNEL

Message: Request to open unknown channel type XXX.

Remarks: An internal system software error has occurred.

651 TAPI_BADTESTER

Message: **This is a host-side only error. No message will be generated by the tester.

Remarks: There is no network node corresponding to the tester address. Make sure the network

configuration is correct.

652 TAPI_NOTFOUND

Message: **This is a host-side only error. No message will be generated by the tester.

Remarks: The tester cannot be located on the network. Make sure the tester is powered on and has

started correctly. This problem can also be caused by network problems.

653 TAPI_REFUSED

Message: **This is a host-side only error. No message will be generated by the tester.

Remarks: The tester is in use. This can be caused by another process running diagnostics or a test

plan.

656 TAPI_CHANLIMIT

Message: Channel limit exceeded.

Remarks: There are too many active network connections to the tester. Close some of the tools that

communicate with the tester and try again.

657 TAPI_BUFOFLOW

Message: **This is a host-side only error. No message will be generated by the tester.

Remarks: An internal system software error has occurred.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-24 S500-901-01 Rev. B / January 2019

LPTLib command descriptions

Detailed descriptions of the LPTLib commands are in the following topics.

addcon

This command adds connections without clearing existing connections.

Models supported

S530, S535, S540

Usage

int addcon(int exist_connect, int connect1, [connectn, [...]] 0);

exist_connect A pin number or instrument terminal ID; this instrument or terminal may have been,

but is not required to have been, previously connected with the addcon, conpin,

or conpth command

connect1 A pin number or an instrument terminal ID

connectn A pin number or an instrument terminal ID

Details

The test system has an I-V matrix. The addcon command can be used to make additional

connections on this matrix. I-V connections are direct connections.

When used with the I-V matrix, the addcon command connects every item in the argument list and

there is no real distinction between the exist_connect parameter and the rest of the connection list.

When using the addcon command with the I-V matrix, the command functions like the conpin

command, except previous connections are never cleared.

The value -1 is ignored by the addcon command and is considered valid as both a connection list

and the exist_connect parameter. There must be at least two parameters with a value other

than -1.

Matrix errors are generated if a dangerous connection is detected, such as connecting a
source-measure unit (SMU) high terminal directly to ground.

Before making the new connections, the addcon command clears all active sources by calling the

devclr command.

You can use this command in dual-site mode (S535 systems only).

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-25

If you have a chuck connected in an S535 system that is in dual-site mode, the pin the chuck is on
cannot be mirrored.

Also see

clrcon (on page 2-33)

conpin (on page 2-37)

conpth (on page 2-39)

delcon (on page 2-41)

adelay

This command specifies an array of delay points to use with asweepX command calls.

Models supported

S530, S535, S540

Usage

int adelay(unsigned int delaypoints, double *delayarray);

delaypoints The number of separate delay points defined in the array

delayarray The name of the array defining the delay points; this is a single-dimension

floating-point array that is delaypoints long and contains the individual delay

times; units of the delays are seconds

Details

The delay is specified in units of seconds, with a resolution of 1 ms. The minimum delay is 0 s.

Each delay in the array is added to the delay specified in the asweepX command. For example, if the

array contains four delays (0.04 s, 0.05 s, 0.06 s, and 0.07 s) and the delay specified in the asweepX

command is 0.1 s, then the resulting delays are 0.14 s, 0.15 s, 0.16 s, and 0.17 s.

You can use this command in dual-site mode (S535 systems only).

Also see

asweepX (on page 2-26)

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-26 S500-901-01 Rev. B / January 2019

asweepX

This command generates a waveform based on a user-defined forcing array (logarithmic sweep or other custom

forcing commands).

Models supported

S530, S535, S540

Usage

int asweepi(int instr_id, unsigned int num_points, double delay_time, double

*force_array);

int asweepv(int instr_id, unsigned int num_points, double delay_time, double

*force_array);

instr_id The instrument identification code of the sourcing instrument

num_points The number of separate current and voltage force points defined in the array

delay_time The delay, in seconds, between each step and the measurements defined by the
active measure list

force_array The name of the user-defined force array; this is a single dimension array that
contains all force points

Details

The asweepX command is used with the smeasX, sintgX, or savgX commands.

The trigXl or trigXg command can also be used with the asweepX command. However, once a

trigger point is reached, the sourcing device stops moving through the array. The output is held at the

last forced point for the duration of the asweepX command. Data resulting from each step is stored in

an array, as noted above, with smeasX. After the trigger point is reached, measurements are made at

each subsequent point. Results are approximately equal because the source is held at a constant
output.

The asweepv and asweepi commands are sourcing-type commands. When called, an automatic

limit is imposed on the sourcing device. Refer to the limitX (on page 2-57) command for additional
information.

The maximum number of times data is measured (using the smeasX, sintgX, or savgX command)

is determined by the num_points argument in the asweepX command. A one-dimensional result

array with the same number of data elements as the selected value of the num_points parameter

must be defined in the test program.

The clrscn command is used to eliminate previous buffers for the second sweep. Using the

smeasX, sintgX, and savgX commands after calling the clrscn command causes the appropriate

new measures to be defined and used.

This command returns dual-site data for SITE0 and SITE1 if available (S535 systems only).

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-27

Example

double icmeas[10], ifrc[10];

.

.

ifrc[0]=1.0e-10;

for (i=1; i<10; i++) /* Create decade array from */

 /* 1.0E-10 to 1.0E-1. */

ifrc[i]=10.0*ifrc[i-1];

.

.

conpin(SMU1, 1, 0); /* Base connection. */

conpin(SMU2, 2, 0); /* Collector connection. */

conpin(GND, 3, 0);

limiti(SMU2, 200.0E-3); /* Reset I limit to maximum. */

smeasi(SMU2, icmeas); /* Define collector current */

 /* array. */

forcev(SMU2, 5.0); /* Force vce bias. */

asweepi(SMU1, 10, 10.0E-3, ifrc); /* SweepIB, 10 points, 10 ms */

 /* apart. */

This example gathers data to construct a graph showing the gain of a bipolar device over a wide range of
base currents. A fixed collector-emitter bias is generated by SMU2. A logarithmic base current from

1.0E-10 to 1.0E-1A is generated by SMU1 using the asweepi command. The collector current applied by

SMU2 is measured 10 times by the smeasi command. The data gathered is then stored in the icmeas

array.

Also see

limitX (on page 2-57)

savgX (on page 2-89)

sintgX (on page 2-109)

smeasX (on page 2-114)

trigXg, trigXI (on page 2-121)

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-28 S500-901-01 Rev. B / January 2019

avgX

This command makes a series of measurements and averages the results.

Models supported

S530, S535, S540

Usage

int avgc(int instr_id, double *result, unsigned int stepno, double steptime);

int avgcg(int instr_id, double *c, double *g, unsigned int stepno, double steptime);

int avgg(int instr_id, double *result, unsigned int stepno, double steptime);

int avgi(int instr_id, double *result, unsigned int stepno, double steptime);

int avgv(int instr_id, double *result, unsigned int stepno, double steptime);

instr_id The instrument identification code of the measuring instrument; SMUn, CMTRn,
VMTRn

result The variable assigned to the result of the measurement

stepno The number of steps averaged in the measurement (1 to 32,767)

steptime The interval in seconds between each measurement; the minimum practical time is
approximately 2.5 ms

c The variable assigned to the capacitance measurement

g The variable assigned to the conductance measurement

Details

The avgX command is used primarily to get measurements when:

The device under test (DUT) being tested acts in an unstable manner.

Electrical interference is higher than can be tolerated if the measX command is used.

The programmer specifies the number of samples and the duration between each sample.

After this command executes, all closed relay matrix connections remain closed and the sources
continue to generate voltage or current. This allows additional sequential measurements.

In general, measurement commands that return multiple results are more efficient than performing

multiple measurement commands. For example, calling a single avgcg command is faster than

calling the avgc command followed by the avgg command.

The rangeX command directly affects the operation of the avgX command. The use of the rangeX

command prevents the addressed instrument from automatically changing ranges. This can result in
an overrange condition similar to what would occur when measuring 10 V on a 2 V range. An
overrange condition returns the value 1.0e+22 as the result of the measurement.

If the rangeX command is not in the test sequence before the avgX call, the measurements

performed automatically select the optimum range.

The avgi and avgv commands return dual-site data for both SITE0 and SITE1 if available (S535

systems only).

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-29

Example

double ciss;

.

.

conpin(CMTR1L, 3, 0);

conpin(CMTR1H, 2, 0);

rangec(CMTR1, 2.0E-12); /* Select range for 2.0 pF. */

avgc(CMTR1, &ciss, 10, 2.0E-3); /* Measure capacitance ten */

 /* times with 2 ms between each;*/

 /* return average of results to*/

 /* ciss. */

This example shows a test sequence used to measure the capacitance between a MOSFET gate and
substrate. The capacitance returned is the average of the result of ten measurements, each separated by
2 ms.

Also see

measX (on page 2-61)

rangeX (on page 2-77)

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-30 S500-901-01 Rev. B / January 2019

bmeasX

This command makes a series of readings as quickly as possible. This measurement mode allows for waveform

capture and analysis (within the resolution of the measurement instrument).

Models supported

S530, S535, S540

Usage

int bmeasi(int instr_id, double *result, unsigned int numrdg, double delay, int timerid,

double *timerdata);

int bmeasv(int instr_id, double *result, unsigned int numrdg, double delay, int timerid,

double *timerdata);

instr_id The instrument identification code of the measuring instrument; SMUn, VMTRn

result The result name of the array to receive readings; the array must be large enough to
hold the readings

numrdg The number of readings to return in the array

delay The delay between points to wait (in seconds)

timerid The device name of the timer to use (0 = no timer data)

timerdata The array used to receive the time points at which the readings were made; if

timerID = 0, the timer is not read and this array is not updated; if used, the array

must be large enough to hold the readings

Details

This command collects data using the presently selected range. The measurement range is typically
the same as the force range. If you need a different range, you must change the measurement range

before calling the bmeasX command.

When used with the time module, the measurements and the times for each measurement are stored.

The specific timer is defined in the command, and the time array is returned with the results array.

Each parametric test system has a single timer. For compatibility with older systems, you can use

TIMER1 through TIMER4 for the instr_id parameter, but any use of TIMER2, TIMER3, or TIMER4

refers internally to TIMER1.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-31

Example 1

double irange, volts, rdng[5], timer[5];

:

.

.

enable(TIMER1); /* Enable the timer module. */

.

.

conpin(GND, 11, 0); /* Make connections. */

conpin(SMU3, 14, 0);

.

.

forcev(SMU3, volts); /* Perform the test. */

measi(SMU3, &irange); /* Set the I range of the SMU based */

rangei(SMU3, irange); /* on the initial measurement. */

.

forcev(SMU3, volts);

bmeasi(SMU3, rdng, 5, 0.0001, TIMER1, timer); /* gather a block of measurements

*/

 /* I measurement of 5 */

 /* readings using SMU3 with */

 /* 100 us delay between */

 /* readings, using TIMER1 with */

 /* time data labeled timer. */

This example shows how the bmeasX command is used with a timer. Each measurement is associated

with a timestamp. This timestamp marks the interval when each reading is made. This information is useful
when determining how much time was required to obtain a specific reading.

Example 2

double volts, rdng[5];

:

.

conpin(GND, 11, 0); /* Make connections. */

conpin(SMU3, 14, 0);

.

forcev(SMU3, volts); /* Perform the test. */

.

bmeasi(SMU3, rdng, 5, 0, 0, 0); /* Block current measurement */

 /* of 5 readings using SMU3. */

This example shows how the bmeasX command is used without a timer. When used without a timer, the

returned measurement is not associated with a timestamp.

Also see

None

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-32 S500-901-01 Rev. B / January 2019

bsweepX

This command supplies a series of ascending or descending voltages or currents and shuts down the source

when a trigger condition is encountered.

Models supported

S530, S535, S540

Usage

int bsweepi(int instr_id, double startval, double endval, unsigned int num_points,

double delay_time, double *result);

int bsweepv(int instr_id, double startval, double endval, unsigned int num_points,

double delay_time, double *result);

instr_id The instrument identification code of the sourcing instrument; SMUn

startval The initial voltage or current level applied as the first step in the sweep; this value
can be positive or negative

endval The final voltage or current level applied as the last step in the sweep; this value
can be positive or negative

num_points The number of separate current and voltage force points between the startval

and endval parameters (1 to 8,000)

delay_time The delay in seconds between each step and the measurements defined by the
active measure list

result Assigned to the result of the trigger; this value represents the source value applied
at the time of the trigger or breakdown

Details

The bsweepX command is used with the trigXg or trigXl command. These trigger commands

provide the termination point for the sweep. At the time of trigger or breakdown, all sources are shut
down to prevent damage to the device under test. Typically, this termination point is the test current
required for a given breakdown voltage.

Once triggered, the bsweepX command terminates the sweep and clears all sources by executing a

devclr command internally. The standard sweepX command continues to force the last value. This

is useful for device characterization curves but can cause problems when used in device breakdown
conditions.

The bsweepX command can also be used with the smeasX, sintgX, savgX, or rtfary command.

Measurements are stored in a one-dimensional array in the order in which they were made.

The system maintains a measurement scan table consisting of devices to test. This table is

maintained using calls to the smeasX, sintgX, savgX, or clrscn command. As multiple calls to

sweepX commands are made, these commands are appended to the measurement scan table.

Measurements are made after the time programmed by the delay_time parameter has elapsed at

the beginning of each bsweepX command step.

New measurements are defined and used by calling the smeasX, sintgX, or savgX command after

a clrscn command.

This command returns dual-site data for SITE0 and SITE1 if available (S535 systems only).

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-33

Example

double bvdss;

.

.

conpin(SMU1, 1, 0);

conpin(GND, 2, 3, 0);

limiti(SMU1, 100e-6); /* Define the I limit for the device. */

rangei(SMU1, 100e-6); /* Select a fixed range */

 /* measurement. */

trigil(SMU1, -10e-6); /* Set the trigger point to -10 uA. */

bsweepv(SMU1, 10.0, 50.0, 40, 10.0e-3, &bvdss); /* Sweep */

 /* from 10 V to 50 V in 40 */

 /* steps with 10 ms settling */

 /* time per step. */

This example measures the drain to source breakdown voltage of a field-effect transistor (FET). A linear

voltage sweep is generated from 10.0 V to 50.0 V by SMU1 using the bsweepv command. The breakdown

current is set to 10 mA by using the trigil command. The voltage at which this current is exceeded is

stored in the variable bvdss.

Also see

clrscn (on page 2-34)

devclr (on page 2-42)

rtfary (on page 2-88)

savgX (on page 2-89)

sintgX (on page 2-109)

smeasX (on page 2-114)

sweepX (on page 2-118)

trigXg, trigXl (on page 2-121)

clrcon

This command opens or de-energizes all device under test (DUT) pins and instrument matrix relays,

disconnecting all crosspoint connections.

Models supported

S530, S535, S540

Usage

int clrcon(void);

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-34 S500-901-01 Rev. B / January 2019

Details

The clrcon command is called automatically by the devint command. The first in a series of one

or more connection-type commands automatically calls a clrcon command. Because this command

is automatically called, it is not normally used by a programmer.

If any sources are actively generating current or voltage, the devclr command is automatically

called before the relay matrix is de-energized.

You can use this command in dual-site mode (S535 systems only).

Also see

devclr (on page 2-42)

devint (on page 2-42)

clrscn

This command clears the measurement scan tables associated with a sweep.

Models supported

S530, S535, S540

Usage

int clrscn(void);

Details

The clrscn command is only required when multiple sweeps and multiple sweep measurements are

used in a single test sequence.

You can use this command in dual-site mode (S535 systems only).

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-35

Example

double res1[14], res2[14];

.

conpin(SMU1, 1, 0);

conpin(SMU2, 2, 0);

conpin(GND, 3, 0);

forcev(SMU1, 4.0); /* Apply 4 V to gate. */

smeasi(SMU2, res1); /* Measure drain current in */

 /* each step; store results */

 /* in res1 array. */

sweepv(SMU2, 0.0, 14.0, 13, 2.0E-2); /* Make */

 /* 14 measurements */

 /* over a range of 0 V to 14 V. */

clrscn(); /* Clear smeasi. */

forcev(SMU1, 5.0); /* Apply 5 V to gate. */

smeasi(SMU2, res2); /* Measure drain current in */

 /* each step; store results in */

 /* res2 array. */

sweepv(SMU2, 0.0, 14.0, 13, 2.0E-2); /* Perform */

 /*14 measurements */

 /* over a range 0 V through 14 V. */

In this example, the sweepX command configures SMU2 to source a voltage that sweeps from 0 V through

+14 V in 14 steps. The results of the first sweepv command are stored in an array called res1. Because

of the clrscn command, the data and pointers associated with the first sweepv command are cleared.

Then 5 V is forced to the gate, and the measurement process is repeated. Results from these second

measurements are stored in an array called res2.

This example gets the measurement data needed to create a graph showing the gate voltage-to-drain
current characteristics of a field-effect transistor (FET). The program samples the current generated by
SMU2 14 times. This is done in two phases: First with 4 V applied to the gate, and then with 5 V applied.
The gate voltages are generated by SMU1.

Also see

sweepX (on page 2-118)

clrtrg

This command clears the user-selected voltage or current level that is used to set trigger points. This permits the

use of the trigXl or trigXg command more than once with different levels in a single test sequence.

Models supported

S530, S535, S540

Usage

int clrtrg(void);

Details

The searchX, sweepX, asweepX, or bsweepX command, each with different voltage or current

levels, may be used repeatedly within a command if each is separated by a clrtrg command.

You can use this command in dual-site mode (S535 systems only).

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-36 S500-901-01 Rev. B / January 2019

Example

double forcur[11], revcur[11]; /* Defines arrays. */

.

.

conpin(SMU1, 1, 0);

conpin(GND, 2, 0);

trigil(SMU1, 5.0e-3); /* Increase ramp to I = 5 mA.*/

smeasi(SMU1, forcur); /* Measure forward */

 /* characteristics; */

 /* return results to forcur */

 /* array. */

sweepv(SMU1, 0.0, 0.5, 10, 5.0e-3); /* Output */

 /* 0 V to 0.5 V in 11 */

 /* steps, each 5 ms duration. */

clrtrg(); /* Clear 5 mA trigger point. */

clrscn(); /* Clear sweepv. */

trigil(SMU1, -0.5e-3); /* Decrease ramp to */

 /* I = -0.5 mA. */

smeasi(SMU1, revcur); /* Measure reverse */

 /* characteristics; */

 /* return results to revcur */

 /* array. */

sweepv(SMU1, 0.0, -30.0, 10, 5.00e-3); /* Output */

 /* 0 V to -30 V in 11 steps */

 /* each 5 ms in duration. */

This example collects data and creates a graph that shows the forward and reverse conduction
characteristics of a diode. The clrtrg command allows multiple triggers to be programmed twice in the

same test sequence. Each result is returned to a separate array.

Also see

asweepX (on page 2-26)

bsweepX (on page 2-32)

searchX (on page 2-97)

sweepX (on page 2-118)

trigXg, trigXl (on page 2-121)

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-37

conpin

This command connects pins and instruments.

Models supported

S530, S535, S540

Usage

int conpin(int connect1, [connectn, [...]] 0);

connect1 A pin number or an instrument terminal ID

connectn A pin number or an instrument terminal ID

Details

The conpin command is used to make connections in Keithley Test Environment (KTE) systems.

The S540 3 kV system has two kinds of pins: High-voltage and low-voltage pins. Pins 1 through 12

are high-voltage (3 kV) pins, and the rest of the pins are low-voltage (100 V) pins.

The S540 contains interconnect pathways that allow 200 V source-measure units (SMUs) to connect

to the 3 kV pins in a protected circuit. The conpin command recognizes this and allows such

connections.

When used with an I-V matrix, the conpin command connects every item in the argument list

together. Because I-V connections do not require pathways to be allocated, a pin or terminal may be

used in more than one conpin command call. If there are no connection rules violated, the pin or

terminal is connected to the additional items and everything to which it is already connected.

High-voltage systems only: If you want to use high-voltage SMUs and low-voltage SMUs

simultaneously, connect the high-voltage SMUs first using the conpin command. This is important

because the source-measure units (SMUs) are connected starting with pathway A, and only

pathways A and B are high-voltage pathways. If you try to connect a high-voltage SMU using a

low-voltage pathway (for example, connecting a 2410 using pathway C in an S530 system), an error

is generated.

The first conpin or conpth command after any other LPT library call clears all sources by calling the

devclr command, and then clears all matrix connections by calling clrcon command before

making the new connections.

The value -1 is ignored by the conpin command and is considered a valid entry in the connection

list. However, there must be at least two entries in the list with a value other than -1.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-38 S500-901-01 Rev. B / January 2019

Matrix errors are generated under the following conditions:

A dangerous connection is detected, such as connecting a source-measure unit (SMU) high

terminal directly to ground.

 The user attempts to connect a high-voltage SMU to a 200 V pin, which is not allowed.

You can use this command in dual-site mode (S535 systems only).

If you have a chuck connected in an S535 system that is in dual-site mode, the pin the chuck is on

cannot be mirrored.

Example

conpin(3, GND, 0); /* Connect pin 3 to GND (through interconnect pathway) */

 /* and ground. */

conpin(2, HVSMU1, 0); /* Connect pin 2 to HVSMU1. */

.

.

Also see

addcon (on page 2-24)

clrcon (on page 2-33)

conpth (on page 2-39)

devclr (on page 2-42)

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-39

conpth

This command connects pins and instruments using a specific pathway.

Models supported

S530, S535, S540

Usage

int conpth(int path, int connect1, int connect2, [connectn, [...]] 0);

path Pathway number to use for the connections

connect1 A pin number or an instrument terminal ID

connect2 A pin number or an instrument terminal ID

connectn A pin number or an instrument terminal ID

Details

The system has an I-V matrix; I-V connections are usually direct connections.

The first conpin or conpth command after any other LPT library call clears all sources by calling the

devclr command and then clears all matrix connections by calling the clrcon command before

making the new connections.

The value -1 for any item in the connection list is ignored by conpth and is considered a valid entry

in the connection list.

The conpth command is not valid in the row-column connection scheme of the HVM1212A 3-kV

matrix (S540 systems only).

Matrix errors are generated under the following conditions:

I-V connections are included in the connection list, except as noted above.

High-voltage pins or 2657A source-measure units (SMUs) are used in arguments in the conpth

command (S540 systems with only an HVM1212A).

You can use this command in dual-site mode (S535 systems only).

If you have a chuck connected in an S535 system that is in dual-site mode, the pin the chuck is on

cannot be mirrored.

Also see

addcon (on page 2-24)

clrcon (on page 2-33)

conpin (on page 2-37)

devclr (on page 2-42)

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-40 S500-901-01 Rev. B / January 2019

delay

This command provides a user-programmable delay in a test sequence.

Models supported

S530, S535, S540

Usage

int delay(unsigned int n);

n The duration of the delay in milliseconds

Details

The delay command can be called anywhere in the test sequence.

Example

double ir4;

.

.

conpin(SMU1, 1, 0);

conpin(GND, 2, 0);

forcev(SMU1, 60.0); /* Generate 60 V from SMU1. */

delay(20); /* Pause for 20 ms. */

measi(SMU1, &ir4); /* Measure current; return */

 /* result to ir4. */

This example measures the leakage current of a variable-capacitance diode. SMU1 applies 60 V across
the diode. This device is always configured in the reverse bias mode, so the high side of SMU1 is
connected to the cathode. Because this type of diode has very high capacitance and low leakage current,
a 20 ms delay is added. After the delay, current through SMU1 is measured and stored in the variable IR4.

Also see

rdelay (on page 2-79)

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-41

delcon

This command removes specific matrix connections.

Usage

int delcon(int exist_connect, [int exist_connectn, [...]] 0);

exist_connect A pin number or an instrument terminal ID

exist_connectn A pin number or an instrument terminal ID

Details

This command disconnects all connections to each terminal or pin listed. Before disconnecting the

pins or terminals, the delcon command clears all active sources by calling the devclr command.

A programmer can run a series of tests in a single test sequence using the addcon and delcon

commands together without breaking existing connections. Only the required terminal and pin
changes are made before the next sourcing and measuring operations.

If you use the delcon command to disconnect an instrument terminal but do not include all the pins it

was connected to in the command, those omitted pins continue to be connected and continue to take

up a matrix row. If you later use the addcon command to reconnect the instrument terminal, another

matrix row is used (the pins left in the initial connection are not automatically reconnected).

Example

double i1,i2;

conpin(GND, 3, 4, 0);

conpin(SMU1, 1, 0);

conpin(SMU2, 2, 0);

forcev(SMU1, 1.0)

forcei(SMU2, 0.001);

measi(SMU1,&i1);

delcon(GND, 3, 4); /* disconnect GND and both pins connected to GND and clear both

SMUs */

forcev(SMU1, 1.0);

measi(SMU1, &i2);

Also see

addcon (on page 2-24)

clrcon (on page 2-33)

conpin (on page 2-37)

conpth (on page 2-39)

devclr (on page 2-42)

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-42 S500-901-01 Rev. B / January 2019

devclr

This command sets all sources to a zero state.

Models supported

S530, S535, S540

Usage

int devclr(void);

Details

This command clears all sources sequentially in the reverse order from which they were originally
forced. Before clearing all Keithley supported instruments, GPIB-based instruments are cleared by

sending all strings defined with the kibdefclr command.

You can use this command in dual-site mode (S535 systems only). For more information about using
dual-site mode, see "Dual-site operation" in the S535 Reference Manual (part number S535-901-01).

The devclr command is implicitly called by the clrcon and devint commands.

Also see

clrcon (on page 2-33)

devint (on page 2-42)

kibdefclr (on page 2-52)

devint

This command resets all active instruments in the system to their default states.

Models supported

S530, S535, S540

Usage

int devint(void);

Details

Resets all active instruments in the system to their default states. It clears the system by opening all
relays and disconnecting the pathways. Meters and sources are reset to their default states. Refer to
the hardware manuals for the instruments in your system for listings of available ranges and the
default conditions and ranges.

Before resetting the instruments, this command:

1. Clears all sources by calling the devclr command.

2. Clears the matrix cross-points by calling the clrcon command.

3. Clears the trigger tables by calling the clrtrg command.

4. Clears the sweep tables by calling the clrscn command.

5. Resets GPIB instruments by sending the string defined with the kibdefint command.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-43

System defaults after a devint command is called are shown in the following tables.

Source-measure unit (SMU) settings after a devint command (defaults)

Item 2410
(S530 systems
only)

2636B 2657A
(S540 systems
only)

2461-SYS

(S535 systems
only)

rangei 105 µA 10 mA 10 mA 10 mA

rangev 21 V 20 V 20 V 20 V

limiti 10 mA 10 mA 10 mA 10 mA

limitv 1110 V 20 V 20 V 20 V

lorangei 1 µA 1 nA 1 nA 1 µA

lorangev 0.21 V 0.20 V 0.20 V 200 mV

Default
measurement
NPLC

0.01 0.01 0.01 0.01

Maximum NPLC 10 25 25 10

Minimum NPLC 0.01 0.001 0.001 0.01

CMTR settings after a devint command (defaults)

Item 4210-CVU

Measurement mode System

Cable compensation Off

AC V HI HCUR/HPOT

DC V HI HCUR/HPOT

AC drive level 0.045 V

Measurement model Cp, Gp

Measurement speed FAST

Frequency 100 kHz

DC voltage offset 0.0 V

Sample hold time 0.0 s

DC presoak voltage 0.0 V

DC bias 0.0 V

DC sample count 1

Sample interval 0.0 s

Current range 1 mA

You can use this command in dual-site mode (S535 systems only). Dual-site settings specified by the

site_enable and site_disable commands are not reset by the devint command.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-44 S500-901-01 Rev. B / January 2019

Also see

clrcon (on page 2-33)

clrscn (on page 2-34)

clrtrg (on page 2-35)

devclr (on page 2-42)

kibdefint (on page 2-53)

disable

This command stops the timer and sets the time value to zero (0).

Models supported

S530, S535, S540

Usage

int disable(int instr_id);

instr_id The instrument identification code of the timer module (TIMERn)

Details

Timer reading is also stopped.

Sending disable(TIMERn) stops the timer and resets the time value to zero (0).

Also see

enable (on page 2-44)

enable

This command provides correlation of real time to measurements of voltage, current, conductance, and

capacitance.

Models supported

S530, S535, S540

Usage

int enable(int instr_id);

instr_id The instrument identification code of the timer module (TIMERn)

Details

Sending enable(TIMERn) initializes and starts the timer and allows other measurements to read

the timer. The time starts at zero (0) at the time of the enable call.

Each parametric test system has a single timer. For compatibility with older systems, you can use

TIMER1 through TIMER4 for the instr_id parameter, but any use of TIMER2, TIMER3, or TIMER4

refers internally to TIMER1.

Also see

disable (on page 2-44)

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-45

forceX

This command programs a sourcing instrument to generate a voltage or current at a specific level.

Models supported

S530, S535, S540

Usage

int forcei(int instr_id, double value);

int forcev(int instr_id, double value);

instr_id The instrument identification code; SMUn, CMTRn; for forcev it can also be CMTR1H

and CMTR1L (see Details)

value The level of the bipolar voltage or current forced in volts or amperes

Details

The forcev and forcei commands generate either a positive or negative voltage, as directed by

the sign of the value argument. With both forcev and forcei commands:

Positive values generate positive voltage or current from the high terminal of the source relative

to the low terminal.

Negative values generate negative voltage or current from the high terminal of the source relative

to the low terminal.

The forcev command accepts both CMTR1H and CMTR1L for the instr_id parameter to support

differential CVU biasing. By forcing one polarity on CMTR1H and an opposite polarity on CMTR1L,
total bias can be up to 60 V, centered in relationship to ground. Note that it is not possible to exceed ±
30 V in relationship to ground.

When using the limitX, rangeX, and forceX commands on the same source at the same time in a

test sequence, call the limitX and rangeX commands before the forceX command.

The ranges of currents and voltages available from a voltage or current source vary with the
instrument type. For more detailed information, refer to the hardware manual for each instrument.

You can use this command in dual-site mode (SMUs only).

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-46 S500-901-01 Rev. B / January 2019

Example

double ir12;

.

.

conpin(2, GND, 0);

conpin(SMU1, 1, 0);

limiti(SMU1, 2.0E-4); /* Limit 1 mA to 200 uA. */

forcev(SMU1, 40.0); /* Apply 40.0 V. */

measi(SMU1, &ir12); /* Measure leakage; */

 /* return results to ir12. */

The reverse bias leakage of a diode is measured after applying 40.0 V to the junction.

Also see

None

getlpterr

This command returns the first LPT library error since the last devint command.

Models supported

S530, S535, S540

Usage

int getlpterr(void);

Details

This command returns the error code of the first error encountered since the last call to the devint

command.

Also see

devint (on page 2-42)

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-47

getstatus

This command returns the operating state of a specified instrument.

Models supported

S530, S535, S540

Usage

int getstatus(int instr_id, unsigned int parameter, double *result);

instr_id The instrument identification code; SMUn or VMTRn

parameter The parameter of query

result The data returned from the instrument; the getstatus command returns one item

in single-site mode and two in dual-site mode

Details

The getstatus command returns instrument-specific operating states.

If you see the UT_INVLDPRM invalid parameter error returned from the getstatus command, it

indicates that the status item parameter is illegal for this device. The requested status code is invalid
for the selected device.

A list of supported getstatus command values for parameter for a source-measure unit (SMU)

are provided in the following table.

This command returns dual-site data for SITE0 and SITE1 if available (S535 systems only).

Supported SMU getstatus query parameters

SMU parameter Returns Comment

KI_IPVALUE The presently programmed
output value

Current value (I output value)

KI_VPVALUE Voltage value (V output value)

KI_IPRANGE The presently programmed
range

Current range (full-scale range value, or 0.0 for
autorange)

KI_VPRANGE Voltage range (full-scale range value, or 0.0 for
autorange)

KI_MAX_VOLTAGE The presently programmed
maximum voltage

For systems with 2657A source-measure units
(SMUs) only; a value between 300 V and
3000 V

KI_IARANGE The presently active range Current range (full-scale range value)

KI_VARANGE Voltage range (full-scale range value)

KI_IMRANGE The present range used when
last measurement was
performed

For autorange, the range at which the previous
current measurement was made

KI_VMRANGE For autorange, the range at which the previous
voltage measurement was made

KI_MEAS_DELAY The presently programmed
SMU measure delay

OFF = No delay

AUTO = The instrument sets the delay

automatically; default setting

<value> = User-specified value in seconds

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-48 S500-901-01 Rev. B / January 2019

SMU parameter Returns Comment

KI_MEAS_DELAY_FACTOR 2636 only:
The presently programmed
delay multiplier

For 26xx SMUs when the KI_MEAS_DELAY

modifier is set to KI_DELAY_AUTO; the value

that stored SMU delay values are multiplied by

KI_INTGPLC The presently programmed
period to average
measurements

AC power line cycles:

CMTR: 0.006 to 10.002

24xx: 0.01 to 10 (S530 only)

26xx: 0.001 to 25

2461-SYS: 0.01 to 10

KI_COMPLNC Active compliance status for
fixed range

In range compliance if 1

KI_2600_ANALOG_FILTER The active state of the analog
filter for a specified SMU

For 26xx SMUs; on or off

KI_SYSTEM_SPEED_MODE The presently programmed
speed mode

FAST or CUSTOM mode

KI_SETTLE_MODE The presently programmed
settling mode

For 26xx SMUs (2461-SYS not supported):

SMOOTH = Additional settings options off

FAST_RANGE = Faster range changes

FAST_POLARITY = Polarity changes without

going to zero

DIRECT_IRANGE = SMU changes range

directly (default)

FAST_ALL = All settle fast modes enabled

KI_CALDATE The date the instrument was
last calibrated

Also see

None

imeast

This command forces a reading of the timer and returns the result.

Models supported

S530, S535, S540

Usage

int imeast(int instr_id, double *result);

instr_id The instrument identification code of the device

result The variable assigned to the measurement

Details

This command applies to all timers.

This command returns dual-site data for SITE0 and SITE1 if available (S535 systems only).

Also see

None

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-49

insbind

This command establishes a cooperative relationship between two instruments.

Models supported

S530, S535, S540

This command is valid only for CMTR2 on S540 systems with two CMTRs.

Usage

int insbind(int instr1, int instr2);

instr1 The first instrument to bind

instr2 The second instrument to bind

Details

Some instruments are designed to be used with other instruments to provide complementary or
enhanced functionality to the other instrument. For example, some capacitance meters (CMTRs)
cannot generate bias voltages by themselves; they rely on a source-measure unit (SMU) to act as the
bias source.

This command closes relays on the HVM1212 matrix to connect the specified high-voltage SMU to
the bias tee connected to CMTR2. This allows the high-voltage SMU to bias a higher voltage than
that normally available from CMTR2.

This command works differently than it does on the S400 and S600 test systems. Linear Parametric

Test Library (LPTLib) code imported from these systems must be modified to accommodate

differences. For example, executing the forceV command (CMTR2, x) will have no effect; this is a

code compatibility issue for S400 and S600 code.

The devint command restores all instruments to normal operation.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-50 S500-901-01 Rev. B / January 2019

Example

double capval;

conpin(CMTR2H, 1, 0);

conpin(CMTR2L, 2, 0);

insbind(HVGND, CMTR2L);

insbind(HVSMU1, CMTR2H);

forcev(HVSMU1, 1500);

measc(CMTR2, &capval);

devint();

Connects CMTR2 to pins 1 and 2 and binds HVSMU1 to CMTR2. HVSMU1 then biases voltage and

measures capacitance. The devint command unbinds the instruments after the measurement is made.

Also see

devint (on page 2-42)

intgX

This command performs voltage or current measurements averaged over a user-defined period (usually one AC

line cycle).

Models supported

S530, S535, S540

Usage

int intgc(int instr_id, double *result);

int intgcg(int instr_id, double *capacitance, double *conductance);

int intgg(int instr_id, double *result);

int intgi(int instr_id, double *result);

int intgv(int instr_id, double *result);

instr_id The instrument identification code of the measuring instrument; SMUn, CMTRn,
VMTRn

result The variable assigned to the result of the measurement

capacitance The variable assigned the capacitance measurement

conductance The variable assigned the conductance measurement

Details

The averaging is done in hardware by integration of the analog measurement signal over a specified
period of time. The integration is automatically corrected for 50 Hz or 60 Hz power mains.

The default integration time is one AC line cycle (1 PLC). This default time can be overridden with the

KI_INTGPLC option of setmode. The integration time can be set from 0.01 PLC to 10.0 PLC. The

devint command resets the integration time to the one AC line cycle default value.

The rangeX command directly affects the operation of the intgX command. The use of the rangeX

command prevents the instrument addressed from automatically changing ranges. This can result in
an overrange condition that would occur when measuring 10.0 V on a 2.0 V range. An overrange
condition returns the value as the measurement result.

If used, the rangeX command must be in the test sequence before the associated intgX command.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-51

In general, measurement commands that return multiple results are more efficient than performing

multiple measurement commands. For example, performing a single call to the intgcg command is

faster than calling the intgc command followed by the intgg command.

The intgi and intgv commands return dual-site data for SITE0 and SITE1 if available (S535

systems only).

Example

double idss;

.

.

conpin(GND, 5, 4, 3, 0);

conpin(SMU1, 2, 0);

limiti(SMU1, 2.0E-8); /* Limits to 20.0 nA. */

rangei(SMU1, 2.0E-8); /* Select range for 20.0 nA */

forcev(SMU1, 25.0); /* Apply 25 V to the gate. */

intgi(SMU1, &idss); /* Measure gate leakage; */

 /* return results to idss. */

This example measures the relatively low leakage current of a metal-oxide semiconductor field-effect
transistor (MOSFET).

Also see

devint (on page 2-42)

measX (on page 2-61)

rangeX (on page 2-77)

setmode (on page 2-101)

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-52 S500-901-01 Rev. B / January 2019

kibdefclr

This command defines the device-dependent command sent to an instrument connected to the GPIB1 interface.

Models supported

S530, S535, S540

Usage

int kibdefclr(int pri_addr, int sec_addr, unsigned int timeout, double delay, unsigned

int snd_size, char *sndbuffer);

pri_addr The primary address of the instrument (0 to 30; the controller uses address 31)

sec_addr The secondary address of the instrument (1 to 30; if the instrument device does not
support secondary addressing, this parameter must be -1)

timeout The GPIB timeout for the transfer in 100 ms units (for example,
timeout = 40 = 4.0 s)

delay The time to wait after the device-dependent string is sent to the device, in seconds

snd_size The number of bytes to send over the GPIB interface

sndbuffer The physical byte buffer containing the data to send over the bus (the physical
CLEAR string); a maximum of 1024 bytes is allowed

Details

This string is sent during any normal tester-based devclr command. It ensures that if the tester is

calling the devclr command internally, any external GPIB device is cleared with the given string.

Each call to the kibdefclr and kibdefint commands copies parameters into a data structure

within the tester memory. These data structures are allocated dynamically. These tables are cleared

when the devint command executes. Any strings previously defined must be redefined.

The tester system allows you to define a maximum of 20 clear and 20 initialization strings. Each string
may contain up to a maximum of 1024 bytes.

Strings are sent over the GPIB interface in a first-in, first-out queue. This means that the first call to

the kibdefclr or kibdefint command is the first string sent over the GPIB. The devclr

(kibdefclr) strings are always sent before initialization.

The KIBLIB devclr strings are sent before the devclr and devint commands execute. This may

be a problem when communicating with any Keithley-supported GPIB instruments. This may also

have an effect on the bsweepX command, because the bsweepX command sends a call to the

devclr command to clear active sources. It is not recommended to use GPIB instruments when

performing tests with the bsweepX command.

Also see

devclr (on page 2-42)

devint (on page 2-42)

kibdefint (on page 2-53)

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-53

kibdefint

This command defines a device-dependent command sent to an instrument connected to the GPIB1 interface.

Models supported

S530, S535, S540

Usage

int kibdefint(int pri_addr, int sec_addr, unsigned int timeout, double delay, unsigned

int snd_size, char *snd_buff);

pri_addr The primary address of the instrument (0 to 30; the controller uses address 31)

sec_addr The secondary address of the instrument (0 to 31; if the instrument device does not
support secondary addressing, this parameter must be -1)

timeout The GPIB timeout for the transfer in 100 ms units (for example,
timeout = 40 = 4.0 s)

delay The time to wait after the device-dependent string is sent to the device, in seconds

snd_size The number of bytes to send over the GPIB interface

snd_buff The physical byte buffer containing the data to send over the bus (the INITIALIZE
string); a maximum of 1024 bytes is allowed

Details

This string is sent during any normal tester-based call to the devint command. It ensures that if the

tester is calling the devint command internally, any external GPIB device is initialized with the rest

of the known instruments.

Each call to the kibdefclr and kibdefint commands copies parameters into a data structure

within the tester memory. These data structures are allocated dynamically. These tables are cleared

when the devint command executes. Any strings previously defined must be redefined.

The tester system allows you to define a maximum of 20 clear and 20 initialization strings. Each string
may contain up to a maximum of 1024 bytes.

Strings are sent over the GPIB interface in a first-in, first-out queue. This means that the first call to

the kibdefclr or kibdefint command is the first string sent over the GPIB. The devclr

(kibdefclr) strings are always sent before initialization.

The KIBLIB devclr strings are sent before the devclr and devint commands execute. This may

be a problem when communicating with any Keithley-supported GPIB instruments. This may also

have an effect on the bsweepX command, because the bsweepX command sends a call to the

devclr command to clear active sources. It is not recommended to use GPIB instruments when

performing tests with the bsweepX command.

Also see

devclr (on page 2-42)

devint (on page 2-42)

kibdefclr (on page 2-52)

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-54 S500-901-01 Rev. B / January 2019

kibrcv

This command reads a device-dependent string from an instrument connected to the GPIB interface.

Models supported

S530, S535, S540

Usage

int kibrcv(int pri_addr, int sec_addr, char term, unsigned int timeout, unsigned int

rcv_size, unsigned int *rcv_len, char *rcv_buff);

pri_addr The primary address of the instrument (0 to 30; the controller uses address 31)

sec_addr The secondary address of the instrument (1 to 30; if the instrument device does not
support secondary addressing, this parameter must be -1)

term The ASCII delimiter character of the returned string; this is the byte used for
terminating data buffer reading

timeout The GPIB timeout for the transfer in 100 ms units (for example,
timeout = 40 = 4.0 s)

rcv_size The physical receive buffer size; this is the maximum number of bytes that can be
read from the device

rcv_len The number of bytes that are read from the device on the GPIB interface; this
variable is returned by the tester after all bytes are read from the device

rcv_buff The physical byte buffer destined to receive the data from the device connected to
the GPIB interface

Details

The kibrcv command receives a buffer from the GPIB interface by doing the following:

1. Assert attention (ATN).

2. Send device LISTEN address.

3. Send device TALK address.

4. Send secondary address (if not -1).

5. De-assert ATN.

6. Read byte array from the device rcv_buff parameter until end-or-identify (EOI) or the delimiter

is received.

7. Assert ATN.

8. Send UNTalk (UNT).

9. Send UNListen (UNL).

10. De-assert ATN.

The rcv_size parameter defines the maximum number of bytes physically allowed in the buffer. If

the rcv_size parameter is greater than the byte string returned by the instrument, the device is

short-cycled and only the maximum number of bytes is returned.

Also see

None

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-55

kibsnd

This command sends a device-dependent command to an instrument connected to the GPIB interface.

Models supported

S530, S535, S540

Usage

int kibsnd(int pri_addr, int sec_addr, unsigned int timeout, unsigned int send_len, char

*send_buff);

pri_addr The primary address of the instrument (0 to 30; the controller uses address 31)

sec_addr The secondary address of the instrument (0 to 31; if the instrument device does not
support secondary addressing, this parameter must be -1)>

timeout The GPIB timeout for the transfer in 100 ms units (for example,
timeout = 40 = 4.0 s)

send_len The number of bytes to send over the GPIB interface

send_buff The physical byte buffer containing the data to send over the bus

Details

The kibsnd command sends a buffer out through the GPIB interface by doing the following:

1. Assert attention (ATN).

2. Send device LISTEN address.

3. Send secondary address (if not -1).

4. Send my TALK address.

5. De-assert ATN.

6. Send the send_buff parameter with end-or-identify (EOI) asserted with the last byte.

7. Assert ATN.

8. Send UNTalk (UNT).

9. Send UNListen (UNL).

10. De-assert ATN.

Also see

None

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-56 S500-901-01 Rev. B / January 2019

kibspl

This command serial polls an instrument connected to the GPIB interface.

Models supported

S530, S535, S540

Usage

int kibspl(int pri_addr, int sec_addr, unsigned int timeout,

int *serial_poll_byte);

pri_addr The primary address of the instrument (0 to 30; the controller uses address 31)

sec_addr The secondary address of the instrument; numbers 0 through 31 are valid; if the
instrument device does not support secondary addressing, this parameter must be
-1

timeout The GPIB polling timeout in 100 ms units (for example, timeout = 40 = 4.0 s)

serial_poll_byte The variable name for the serial poll byte returned by the current; must be 4 bytes
long

Details

The kibspl command does the following:

1. Assert attention (ATN).

2. Send serial poll enable (SPE).

3. Send LISTEN address.

4. Send device TALK address.

5. Send secondary address (if not -1).

6. De-assert ATN.

7. Poll GPIB interface until data is available.

8. Read the serial_poll_byte parameter from the device (if data is available)

9. Assert ATN.

10. Send serial poll disable (SPD).

11. Send UNTalk (UNT).

12. Send UNListen (UNL).

13. De-assert ATN.

Also see

kibsplw (on page 2-57)

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-57

kibsplw

This command synchronously serial polls an instrument connected to the GPIB interface.

Models supported

S530, S535, S540

Usage

int kibsplw(int pri_addr, int sec_addr, unsigned int timeout, int *serial_poll_byte);

pri_addr The primary address of the instrument (0 to 30)

sec_addr The secondary address of the instrument (0 to 31; if the instrument device does not

support secondary addressing, this parameter must be 1)

timeout The GPIB polling timeout in 100 ms units (for example, a timeout of 40 = 4.0 s)

serial_poll_byte The serial poll status byte variable name returned by the device presently being
polled

Details

This command waits for SRQ to be asserted on the GPIB by any device. After SRQ is asserted, a
serial poll sequence is initiated for the device and the serial poll status byte is returned.

The kibsplw command does the following:

1. Waits with timeout for general SRQ assertion on the GPIB.

2. Calls the kibspl command.

Also see

kibspl (on page 2-56)

limitX

This command allows the programmer to specify a current or voltage limit other than the default limit of the

instrument.

Models supported

S530, S535, S540

Usage

int limiti(int instr_id, double limit_val);

int limitv(int instr_id, double limit_val);

instr_id The instrument identification code of the instrument on which to impose a source

value limit; SMUn

limit_val The maximum level of the current or voltage; see Details

Details

The parameter limit_val is bidirectional. For example, the command limitv(SMU1, 10.0) limits

the voltage of the current source SMU1 to ±10.0 V. The command limiti(SMU1, 1.5E-3) limits

the current of the voltage source SMU1 to ±1.5 mA.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-58 S500-901-01 Rev. B / January 2019

Use the limiti command to limit the current of a voltage source. Use the limitv command to limit

the voltage of a current source.

If the instrument is ranged below the programmed limit value, the instrument will temporarily limit to

full scale of range.

This command must be called in the test sequence before the associated forceX, sweepX, or

searchX command is used to generate the voltage or current. The limitX command also sets the

top measurement range of an autoranged measurement.

The limits set within a particular test sequence are cleared when the devint command is called.

You can use this command in dual-site mode (S535 systems only).

Example

double ibceo, vbceo;

.

.

conpin(2, 3, GND, 0);

conpin(SMU1, 1, 0);

limitv(SMU1, 150.0); /* Limit voltage at 150 V. */

forcei(SMU1, ibceo); /* Force current through the DUT. */

measv(SMU1, &vbceo); /* Measure breakdown voltage; */

. /* return results to vbceo. */

.

This example measures the breakdown voltage of a device. The limit is set at 150 V. This limit is
necessary to override the default limit of the SMU, which would otherwise be in effect.

Also see

devint (on page 2-42)

forceX (on page 2-45)

measX (on page 2-61)

rangeX (on page 2-77)

searchX (on page 2-97)

sweepX (on page 2-118)

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-59

lorangeX

This command defines the bottom autorange limit.

Models supported

S530, S535, S540

Usage

int lorangei(int instr_id, double range);

int lorangev(int instr_id, double range);

instr_id The instrument identification code

range The value of the instrument range, in volts or amperes

Details

The lorangeX command is used with autoranging to limit the number of range changes, which

saves test time.

If the instrument is on a range lower than the one specified by the lorangeX command, the range is

changed. The system automatically provides any settling delay for the range change that may be
necessary due to this potential range change.

When the force and measure functions are both current (I) or both voltage (V), specifying a lower

force range overrides the lowrangeX command.

Once defined, the lorangeX command is in effect until a devclr or devint command, or another

lorangeX command executes.

You can use this command in dual-site mode (S535 systems only).

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-60 S500-901-01 Rev. B / January 2019

Example

double idatvg[25];

.

.

conpin(SMU1, 10, 0);

conpin(SMU2, 11, 0):

conpin(12, GND, 0);

lorangei(SMU1, 2.0E-6); /* Select 2 uA as minimum */

 /* range during autoranging. */

smeasi(SMU1, idatvg); /* Set up sweep measurement */

 /* of IDS. */

sweepv(SMU2, 0.0, 2.5, 24, 0.002); /* Sweep */

 /* gate from 0 V to 2.5 V. */

This example illustrates how you would select the bottom autorange limit.

Also see

devclr (on page 2-42)

devint (on page 2-42)

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-61

measX

This command allows the measurement of voltage, current, charge capacitance, or conductance.

Models supported

S530, S535, S540

Usage

int measc(int instr_id, double *result);

int meascg(int instr_id, double *c, double *g);

int measg(int instr_id, double *result);

int measi(int instr_id, double *result);

int measv(int instr_id, double *result);

instr_id The instrument identification code

c The variable assigned to the capacitance of the measurement

g The variable assigned to the conductance of the measurement

result The variable assigned to the result of the measurement

Details

After the command is called, all relay matrix connections remain closed, and the sources continue to
generate voltage or current. For this reason, two or more measurements can be made in sequence.

The rangeX command directly affects the operation of the measX command. Using the rangeX

command prevents the instrument addressed from automatically changing ranges when the measX

command is called. This can result in an overrange condition such that would occur when measuring
10 V on a 2 V range. An overrange condition returns the value as the result of the measurement.

If used, the rangeX command must be in the test sequence before the associated measX command.

All measurements except the meast command invoke a timer snapshot measurement to be made by

all enabled timers. This timer snapshot can then be read with the meast command.

In general, measurement functions that return multiple results are more efficient than performing

multiple measurement functions. For example, calling a single meascg command is faster than calling

the measc command followed by the measg command.

The measi and measv commands return dual-site data for SITE0 and SITE1 if available (S535

systems only).

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-62 S500-901-01 Rev. B / January 2019

Example

double if46, vf47;

.

.

if46 = 50e-3;

.

.

conpin(3, GND, 0);

conpin(SMU1, 2, 0);

forcei(SMU1, if46); /* Forward bias the diode; */

 /* set SMU current */

 /* limit to 50 mA. */

measv(SMU1, &vf47); /* Measure forward bias; */

 /* return result to vf47. */

In this example, the forward bias voltage of the diode is obtained from a single source-measure unit
(SMU).

Also see

rangeX (on page 2-77)

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-63

mpulse

This command uses a source-measure unit (SMU) to force a voltage pulse and measure both the voltage and

current for exact device loading.

Models supported

S530, S535, S540

Usage

int mpulse(int instr_id, double pulse_amplitude, double pulse_duration, double *vmeas,

double *imeas);

instr_id The instrument identification code of the instrument under control

pulse_amplitude The pulse height in volts

pulse_duration The pulse width in seconds; the measurements are made at the end of the pulse

before the mpulse command is shut down

vmeas The variable used to receive the voltage on the output of the SMU at the time the
pulse terminates; this reading is buffered internally

imeas The variable used to receive the current drawn from the SMU; this measurement is
made simultaneously with the voltage, so the combined values are an exact
representation of the device load at pulse termination

Details

Voltage and current are measured just before the pulse terminates. Pulse mode is used because the
device under test will be destroyed if the voltage is applied for a long period of time, such as with
GaAs type devices or high-power bipolar.

This command returns dual-site data for SITE0 and SITE1 if available (S535 systems only).

Example

.

.

mpulse(SMU1, vds, 1.0E-3, vdsat, idsat)

This example measures the drain current of a metal-oxide semiconductor field-effect transistor (MOSFET)
when drain-source voltage (VDS) equals gate-source voltage (VGS). A voltage pulse, VDS, is applied to the
drain. The pulse duration is 1 ms. Voltage across the MOS transistor, VDSAT, and drain current, IDSAT, are
measured.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-64 S500-901-01 Rev. B / January 2019

Also see

None

pgu_current_limit

This command sets the maximum amount of current that the pulse generator unit (PGU) channel can supply

because of the pulse amplitude and load impedance.

Models supported

S530, S540 (systems with pulse-generator units (PGUs))

Usage

istat = int pgu_current_limit(int instr_id, double limit);

intstr_id The instrument identification code of the PGU

limit The current limit value

Details

This command returns a 0 if executed without error; a negative number indicates an error.

Example

pgu_current_limit(PGU2, 1e-3)

Sets the current limit of PGU2 to 1 mA.

Also see

pgu_load (on page 2-67)

pgu_delay

This command sets the amount of time to wait after a trigger signal or command is received before outputting a

pulse (trigger delay time).

Models supported

S530, S540 (systems with pulse-generator units (PGUs))

Usage

istat = int pgu_delay(int instr_id, double delay_time);

instr_id The instrument identification code of the pulse generator

delay_time The trigger delay time in seconds (input)

Details

This command returns a 0 if executed without error; a negative number indicates an error.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-65

Example

istat = pgu_delay(PGU1A,0.0);

...

istat = pgu_delay(PGU1B,10e-06);

istat = pgu_trig();

Set channel 1 to have no pulse delay.

Set channel 2 to trigger a pulse after a delay of
10 µs.

Also see

pgu_period (on page 2-69)

pgu_range (on page 2-70)

pgu_trig (on page 2-72)

pgu_fall

This command sets the fall time of a pulse.

Models supported

S530, S540 (systems with pulse-generator units (PGUs))

Usage

istat = int pgu_fall(int instr_id, double fall_time);

instr_id The instrument identification code of the pulse generator unit (PGU)

fall_time The desired fall time in seconds (input)

Details

This command returns a 0 if executed without error; a negative number indicates an error.

The fall time must be greater than 10 ns and less than 33 ms.

Example

pgu_fall(PGU2, 50e-9)

Sets the pulse fall time of PGU2 to 50 ns.

Also see

pgu_range (on page 2-70)

pgu_rise (on page 2-70)

pgu_trig (on page 2-72)

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-66 S500-901-01 Rev. B / January 2019

pgu_halt

This command stops all the pulse channels in the identified instrument card.

Models supported

S530, S540 (systems with pulse-generator units (PGUs))

Usage

istat = int pgu_halt(int instr_id);

instr_id The instrument identification code of the pulse generator unit (PGU)

Details

This command returns a 0 if executed without error; a negative number indicates an error.

Example

pgu_halt(PGU1)

Stops pulse output on PGU1.

Also see

pgu_trig (on page 2-72)

pgu_height

This command sets the peak-to-peak height of the pulse.

Models supported

S530, S540 (systems with pulse-generator units (PGUs))

Usage

istat = int pgu_height(int instr_id, double height);

instr_id The instrument identification code

height The pulse height in volts (input)

Details

This command returns a 0 if executed without error; a negative number indicates an error.

The pulse height must be greater than -20 V and less than 20 V.

Example

pgu_height(PGU2, 2)

Sets the height of the pulse on PGU2 to 2 V.

Also see

None

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-67

pgu_init

This command initializes communication with the pulse card and sets the pulse generator to a specific set of

default conditions.

Models supported

S530, S540 (systems with pulse-generator units (PGUs))

Usage

istat = int pgu_init(int instr_id);

instr_id The instrument identification code

Details

This command returns a 0 if executed without error; a negative number indicates an error.

The pgu_init command sets the pulse generators to the following states:

 Set to single pulse mode

 Set output impedance to 50 Ω

 Set output polarity to normal

 Enable software triggering

 Set rise time, fall time to 100 ns

 Set pulse delay to 0 s

 Set pulse height to 0.2 V

 Set pulse width to 500 ns

Example

pgu_init(PGU2)

Initializes PGU2 and resets it to default settings.

Also see

None

pgu_load

This command sets the load impedance of a pulse.

Models supported

S530, S540 (systems with pulse-generator units (PGUs))

Usage

istat = int pgu_load(int instr_id, double load);

instr_id The instrument identification code

load The output (load) impedance in ohms (input)

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-68 S500-901-01 Rev. B / January 2019

Details

This command returns a 0 if executed without error; a negative number indicates an error.

The load must be greater than 1 Ω and less than 10 MΩ.

Example

pgu_load(PGU1, 100)

Sets the output impedance of PGU2 to 100 Ω.

Also see

None

pgu_mode

This command sets the pulse mode of the pulse generator.

Models supported

S530, S540 (systems with pulse-generator units (PGUs))

Usage

istat = int pgu_mode(int instr_id, int mode);

instr_id The instrument identification code

mode The pulse mode of the pulse generator:

 Single = 0; single-pulse output

 Continuous = 1; continuous stream of pulses

 Burst = 2; a burst of a specified number of pulses

Details

This command returns a 0 if executed without error; a negative number indicates an error.

Mode numbers less than 0 and greater than 2 are not accepted.

To stop the generation of continuous pulses and reset the pulse generator to its default state

(single-pulse output), send the pgu_init (on page 2-67) command.

Example

pgu_mode(PGU2, 1)

Sets PGU2 to the continuous pulse mode.

Also see

pgu_init (on page 2-67)

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-69

pgu_offset

This command sets the peak-to-peak height and DC offset of the pulse.

Models supported

S530, S540 (systems with pulse-generator units (PGUs))

Usage

istat = int pgu_offset(int instr_id, double amplitude, double offset);

instr_id The instrument identification code

amplitude The peak-to-peak amplitude in volts (input); a positive number

offset The DC offset of the pulse in volts (input); a positive or negative number

Details

This command returns a 0 if executed without error; a negative number indicates an error.

The amplitude and offset combined must be greater than -20 V and less than +20 V.

Example

pgu_offset(PGU1, 10, 5)

Sets the peak-to-peak amplitude and DC offset on PGU1.

Also see

None

pgu_period

This command sets the period of a pulse.

Models supported

S530, S540 (systems with pulse-generator units (PGUs))

Usage

istat = int pgu_period(int instr_id, double period);

instr_id The instrument identification code

period The pulse period in seconds (input)

Details

This command returns a 0 if executed without error; a negative number indicates an error.

Example

pgu_period(PGU1, 200e-9)

Sets the pulse period of PGU1 to 200 ns.

Also see

pgu_trig (on page 2-72)

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-70 S500-901-01 Rev. B / January 2019

pgu_range

This command sets the voltage range of a pulse generator channel.

Models supported

S530, S540 (systems with pulse-generator units (PGUs))

Usage

istat = int pgu_range(int instr_id, double range);

instr_id The instrument identification code

range The voltage range of the pulse (input); 5 or 20

Details

This command returns a 0 if executed without error; a negative number indicates an error.

Example

pgu_range(PGU2, 20)

Sets the voltage range of the PGU2 to 20 V.

Also see

pgu_fall (on page 2-65)

pgu_period (on page 2-69)

pgu_rise (on page 2-70)

pgu_width (on page 2-74)

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-71

pgu_rise

This command sets the rise time of a pulse.

Models supported

S530, S540 (systems with pulse-generator units (PGUs))

Usage

istat = int pgu_rise(int instr_id, double rise_time);

instr_id The instrument identification code

rise_time The rise time in seconds (input)

Details

This command returns a 0 if executed without error; a negative number indicates an error.

The rise time must be greater than 10 ns and less than 33 ms.

Example

pgu_rise(PGU1, 50e-9)

Sets the pulse rise time of PGU1 to 50 ns.

Also see

pgu_fall (on page 2-65)

pgu_range (on page 2-70)

pgu_trig (on page 2-72)

pgu_select

This deprecated command selects a pulse generator unit on which to modify a pulse output channel.

Models supported

S530 (systems with pulse-generator units (PGUs))

Usage

int pgu_select(int instr_id)

instr_id The instrument identification code

Details

This function has been deprecated, but it remains to support older code. This command should not be
used in any new code that you develop.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-72 S500-901-01 Rev. B / January 2019

pgu_trig

This command triggers the first pulse generator unit and outputs the waveforms (this command is for compatibility

with previous versions of this software).

Models supported

S530, S540 (systems with pulse-generator units (PGUs))

Usage

istat = int pgu_trig(int instr_id);

instr_id The instrument identification code

Details

This command returns a 0 if executed without error; a negative number indicates an error.

This command is similar to using the pgu_trig_unit(1) command.

Example

pgu_trig(PGU1)

Triggers the first pulse generator unit (PGU1).

Also see

pgu_delay (on page 2-64)

pgu_trig_burst (on page 2-72)

pgu_trig_unit (on page 2-73)

pgu_trig_burst

This command triggers a specified number of pulses on the selected pulse generator unit.

Models supported

S530, S540 (systems with pulse-generator units (PGUs))

Usage

istat = int pgu_trig_burst(int instr_id, int unit, long count);

instr_id The instrument identification code

unit Pulse generator unit number (input): 1, 2, 3, or 4, depending on system

configuration

count The number of pulses to output: 1 to 65535 (input).

Details

This command triggers a burst of pulses that have been previously defined. Unlike the pgu_trig

command, this command takes a unit number and a number of pulses as arguments so that you can
trigger a stream of pulses on a specific pulse generator unit.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-73

To trigger multiple pulse generator units, you can sum the unit numbers designated to the pulse
generators as listed in the following table.

Number Pulse generator unit

4096 PTRIG1

8192 PTRIG2

16384 PTRIG3

32768 PTRIG4

This command returns a 0 if executed without error; a negative number indicates an error.

Example

istat = pgu_trig_burst(2, 107)

Triggers 107 pulses on pulse generator unit number 2.

Also see

pgu_trig (on page 2-72)

pgu_trig_unit (on page 2-73)

pgu_trig_unit

This command triggers a specified pulse generator unit or units to output waveforms.

Models supported

S530, S540 (systems with pulse-generator units (PGUs))

Usage

istat = int pgu_trig_unit(int unit);

unit Pulse generator unit number (input): 1, 2, 3, or 4, depending on system

configuration

Details

This command returns a 0 if executed without error; a negative number indicates an error.

To trigger multiple pulse generator units, you can sum the unit numbers designated to the pulse
generators as listed in the following table.

Number Pulse generator unit

4096 PTRIG1

8192 PTRIG2

16384 PTRIG3

32768 PTRIG4

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-74 S500-901-01 Rev. B / January 2019

Example 1

istat = pgu_trig_unit(2)

Triggers pulses on pulse generator unit 2.

Example 2

istat = pgu_trig_unit(12288)

Triggers pulses on pulse generator units 1 and 2.

Example 3

istat = pgu_trig_unit(3)

Triggers the pulses on pulse generator unit 3 (not units 1 and 2).

Also see

pgu_trig (on page 2-72)

pgu_trig_burst (on page 2-72)

pgu_width

This command sets the width of a pulse.

Models supported

S530, S540 (systems with pulse-generator units (PGUs))

Usage

istat = int pgu_width(int instr_id, double width);

instr_id The instrument identification code

width The pulse width in seconds (input)

Details

This command returns a 0 if executed without error; a negative number indicates an error.

The width must be greater than 250 ns and less than 999 ms.

Example

istat pgu_width(PGU2, 10e-06)

Sets the pulse width on PGU2 to 10 µs.

Also see

pgu_period (on page 2-69)

pgu_range (on page 2-70)

pgu_trig (on page 2-72)

pgu_trig_burst (on page 2-72)

pgu_trig_unit (on page 2-73)

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-75

pulseX

This command directs a sourcing instrument to force a voltage or current at a specific level for a predetermined

length of time.

Models supported

S530, S535, S540

Usage

int pulsei(int instr_id, double forceval, double time);

int pulsev(int instr_id, double forceval, double time);

instr_id The instrument identification code; SMUn

forceval The level of voltage in volts or current in amperes to force; see Details

time The pulse duration in seconds; for example, a time of 0.5 initiates a time of 0.5 s,
and a time of 2.0e-2 initiates a time of 20 ms; the minimum practical time for a
source-measure unit (SMU) source is dependent on the voltage or current level
being sourced and the impedance of the device under test (DUT)

Details

The forceval parameter can be positive or negative. For example, sending pulsev(SMU1, 10.0,

10e-3) generates +10 V for 10 ms, and sending pulsei(SMU1, -1.5e-3, 10e-3) generates

-1.5 mA for 10 ms.

The ranges of current and voltage available vary with the instrument type. For more detailed
information, refer to the hardware manuals of the instruments in your system.

The pulsev and pulsei commands generate either a positive or negative voltage, as specified by

the sign of the value argument. With both the pulseV and pulseI commands:

A positive value generates a positive voltage from the high terminal of the source.

A negative value generates a negative voltage from the high terminal of the source.

After the pulseX command is executed, other commands may be used to make measurements. The

measX command can measure:

Residual voltage or current as it decays after removal of the initial application.

Capacitance between DUT pins as the residual voltage or current decays.

All measurements made using the pulseX and measX commands are processed after the pulse has

completed.

Whenever the pulseX command is run, either a default or a programmed current or voltage limit is in

effect. The type of limit depends on the type of pulseX command:

The pulsev command has an automatic current limit default. For example, a SMU used as a

voltage source defaults to a current limit of 10 mA. You can call the limiti command before the

pulseV command to override the default.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-76 S500-901-01 Rev. B / January 2019

The pulsei command has an automatic voltage limit default. For example, a SMU used as a

current source defaults to a voltage limit of 20 V. You can call the limitv command before the

pulsei command to override the default.

When using the limitX and pulseX commands on the same source at the same time in a test

sequence, call the limitX command first, then call the pulseX command.

You can use this command in dual-site mode (S535 systems only).

Example

float res1, res2;

.

.

conpin(GND, 2, 3, 0);

conpin(SMU1, 1, 0)

conpin(SMU2, 4, 0)

forcev(SMU1, .5)

trigil(SMU1, -1e-5) /* Set the trigger point for -10 mA. */

searchv(SMU2, 0.0, 3.0, 7, 2.0E-5, &res1) /* Increase */

 /* voltage until trigger */

 /* point occurs. Return results to res1. */

pulsev(SMU2, 20.0, 5e-1) /* Apply a 20 V pulse to the */

 /* gate for 500 ms. */

searchv(SMU2, 0.0, 3.0, 7, 2.0E-5, &res2) /* Increase */

 /* voltage until trigger */

 /* point occurs. Return results */

 /* to res2. */

This example measures the threshold voltage shift of an FET by calling two searchv commands:

1. The searchv command measures the gate voltage required to initiate a drain current of 10 μA.

2. The searchv command measures the gate voltage required to initiate a drain current of 10 μA

immediately after a 20 V pulse is applied to the gate.

Note that the second searchv command was called without reprogramming the trigil command. This

is possible because the clear trigger command (clrtrg) was not used.

Also see

None

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-77

rangeX

This command selects a range and prevents the selected instrument from autoranging.

Models supported

S530, S535, S540

Usage

int rangec(int instr_id, double range);

int rangei(int instr_id, double range);

int rangev(int instr_id, double range);

instr_id The instrument identification code; SMUn, CMTRn

range The value of the highest measurement to be made (the most appropriate range for

this measurement is selected); if range is set to 0, the instrument autoranges

Details

Use the rangeX command to eliminate the time required by automatic range selection on a

measuring instrument. Because the rangeX command prevents autoranging, an overrange condition

can occur (for example, when measuring 10 V on a 2 V range). The value 1.0e+22 is returned when
this occurs.

The rangeX command can also reference a source, because a source-measure unit (SMU) can be

either of the following:

Simultaneously a voltage source, voltmeter, and ammeter.

 Simultaneously a current source, ammeter, and voltmeter.

The range of a SMU is the same for the source and the measure commands.

When selecting a range below the limit value, whether it is explicitly programmed or the default value,

an instrument temporarily uses the full-scale value of the range as the limit. This does not change the

programmed limit value, and if the instrument range is restored to a value higher than the

programmed limit value, the instrument again uses the programmed limit value.

When changing the instrument range, be careful not to overrange the instrument. For example, a test

initially performed on the 10 mA range with a 5 mA limit is changed to test in the 1 mA range with a

1 mA limit. Notice that the limit is lowered from 5 mA to 1 mA to avoid overranging the 1 mA setting.

You can use this command in dual-site mode (S535 systems only).

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-78 S500-901-01 Rev. B / January 2019

Example

double icer2;

.

.

conpin(GND, 3, 2, 0);

conpin(SMU1, 4, 0);

limiti(SMU1, 1.0E-3); /* Limit current to 1.0 mA. */

rangei(SMU1, 2.0E-3); /* Select range for 2 mA. */

forcev(SMU1, 35.0); /* Force 35 V. */

measi(SMU1, &icer2); /* Measure leakage; return */

 /* results to icer2. */

This example specifies connections, sets a 1 mA limit on the 2 mA range and forces 35 V, then measures

current leakage and returns the results to the variable icer2.

Equation 1: SMU measure and source range function

Also see

None

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-79

rdelay

This command sets a user-programmable delay.

Models supported

S530, S535, S540

Usage

int rdelay(double n);

n The delay duration in seconds

Example

double ir4;

.

.

conpin(SMU1, 1, 0);

conpin(GND, 2, 0);

forcev(SMU1, 60.0); /* Generate 60 V from SMU1. */

rdelay(0.02); /* Pause for 20 ms. */

measi(SMU1, &ir4); /* Measure current; return */

 /* result to ir4. */

This example measures the leakage current of a variable-capacitance diode. SMU1 presets 60 V across
the diode. The device is configured in reverse-bias mode with the high side of SMU1 connected to the
cathode. This type of diode has high capacitance and low-leakage current. Because of this, a 20 ms delay

is added. After the delay, current through SMU1 is measured and stored in the variable ir4.

Also see

delay (on page 2-40)

refctrl

This command enables or disables automatic reference measurements.

Models supported

S530, S535, S540

Usage

int refctrl(int instr_id, int auto_ref)

instr_id The instrument identification code

auto_ref Automatic reference measurement on or off:

REF_ON = 1

REF_OFF = 2

Details

Use this command to turn off automatic reference measurements in sweeps and other test
sequences in which measurement timing is critical.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-80 S500-901-01 Rev. B / January 2019

When automatic reference measurements are disabled, the instrument may gradually drift out of

specification.

You can use this command in dual-site mode (S535 systems only).

Example

int refctrl(SMU1, 2)

Turn off automatic reference measurements on source-measure unit 1.

Also see

None

rsa_close

This command disconnects communications to the spectrum analyzer.

Models supported

S530, S540 (systems with an RSA306B USB Spectrum Analyzer)

In Keithley systems, the RSA306B functions as a replacement for discontinued scope cards.

Spectrum analyzer capabilities may be added in the future.

Usage

int rsa_close(int instr_id);

instr_id The instrument identification code of the spectrum analyzer

Details

This command returns a 0 if executed without error; a negative number indicates an error.

Example

rsa_close(RSA1)

Disconnects communications to spectrum analyzer.

Also see

None

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-81

rsa_detect_peaks

This command returns frequencies in signal amplitude order.

Models supported

S530, S540 (systems with an RSA306B USB Spectrum Analyzer)

In Keithley systems, the RSA306B functions as a replacement for discontinued scope cards.

Spectrum analyzer capabilities may be added in the future.

Usage

int rsa_detect_peaks(int instr_id, double min_level, double lower_bound, double

upper_bound, double *freq_array, int nPeaks, double *amp_array, int nPeak1);

instr_id The instrument identification code

min_level The minimum amplitude in decibels; valid values: –50 dB to 20 dB; the peak
detected must be higher than this parameter (input)

lower_bound The measured peak is ignored if the ratio of measured frequencies versus returned

peaks is greater than or equal to this parameter; valid values 0.1% (0.001) to

100% (1.000) (input)

upper_bound The measured peak is ignored if the ratio of measured frequencies versus returned
peaks is less than or equal to this parameter; valid values 0.1% (0.001) to 100%

(1.000) (input)

freq_array The array output of measured peak frequencies in Hertz (output)

nPeaks The number of peak frequencies to return (valid values 1 to 5); zero (0) is returned

to fill the output array when the number of detected peaks is less than this
parameter (input)

amp_array The amplitude of the measured peak frequencies in dB (output)

nPeak1 This parameter must be the same as the nPeaks parameter (input)

Details

The spectrum analyzer must be initialized before using this command.

Use this command to return a specified number of frequencies in signal amplitude order. The highest
peak is returned first, then the second highest peak is returned, and so on. If multiple peaks are
between the upper and lower bounds, the highest peak is returned and the others are ignored (see
the following figure).

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-82 S500-901-01 Rev. B / January 2019

Figure 1: Upper and lower bounds

If any detected peak frequency is less than or equal to the min_level parameter, that peak is

dropped and the frequency is returned as zero. If a detected peak frequency is a part of a
single-frequency spectrum, the peak is ignored.

Each measured peak frequency has a corresponding measured signal level returned in the

amp_array parameter.

Example

double freq[5];

double ampltd[5];

.

.

.

Status1 = rsa_init(RSA1);

Status2 = rsa_setup(RSA1, 20e6, 850e6, 1e6);

Status3 = rsa_detect_peaks(RSA1, 6e-4, 0.7, 0.4, freq_array, 5, amp_array, 5);

This example sets up a spectrum analyzer to scan a 20 MHz to 850 MHz signal in 1 MHz steps and return five

detected peak frequencies that are within the specified values of the lower_bound and upper_bound

parameters.

Also see

rsa_init (on page 2-83)

rsa_setup (on page 2-86)

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-83

rsa_init

This command initializes the spectrum analyzer to its default state.

Models supported

S530, S540 (systems with an RSA306B USB Spectrum Analyzer)

In Keithley systems, the RSA306B functions as a replacement for discontinued scope cards.

Spectrum analyzer capabilities may be added in the future.

Usage

int rsa_init(int instr_id)

instr_id The instrument identification code of the spectrum analyzer

Details

The spectrum analyzer must be initialized before using the rsa_detect_peaks command.

This command returns a 0 if executed without error; a negative number indicates an error.

Example

double freq;

double ampltd;

.

.

.

Status1 = rsa_init(RSA1);

Status2 = rsa_setup(RSA1, 20e6, 850e6, 1e6);

Status3 = rsa_measure(RSA1, freq, ampltd);

This example shows how to initialize the spectrum analyzer to its default state.

Also see

rsa_detect_peaks (on page 2-81)

rsa_measure

This command measures the frequency and amplitude of the strongest signal.

Models supported

S530, S540 (systems with an RSA306B USB Spectrum Analyzer)

In Keithley systems, the RSA306B functions as a replacement for discontinued scope cards.

Spectrum analyzer capabilities may be added in the future.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-84 S500-901-01 Rev. B / January 2019

Usage

int rsa_measure(int instr_id, double *freq_result, double *amp_result)

instr_id The instrument identification code of the spectrum analyzer

freq_result The measured frequency in Hertz (Hz)

amp_result The measured amplitude in decibels (dB)

Details

The spectrum analyzer must be initialized before using this command.

This command returns a 0 if executed without error; a negative number indicates an error.

Example

double freq;

double ampltd;

.

.

.

Status1 = rsa_init(RSA1);

Status2 = rsa_setup(RSA1, 20e6, 850e6, 1e6);

Status3 = rsa_measure(RSA1, freq, ampltd);

This example shows how to measure the amplitude of the strongest signal.

Also see

rsa_init (on page 2-83)

rsa_setup (on page 2-86)

rsa_measure_next

This command returns the frequency and amplitude of the next highest peak in the frequency spectrum.

Models supported

S530, S540 (systems with an RSA306B USB Spectrum Analyzer)

In Keithley systems, the RSA306B functions as a replacement for discontinued scope cards.

Spectrum analyzer capabilities may be added in the future.

Usage

int rsa_measure_next(int instr_id, double *freq_result, double *amp_result)

instr_id The instrument identification code of the spectrum analyzer

freq_result The measured frequency in Hertz (Hz)

amp_result The measured amplitude in decibels (dB)

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-85

Details

The spectrum analyzer must be initialized before using this command.

This command returns a 0 if executed without error; a negative number indicates an error.

Example

double freq;

double ampltd;

double freq_next;

double ampltd_next;

.

.

.

Status1 = rsa_init(RSA1);

Status2 = rsa_setup(RSA1, 20e6, 850e6, 1e6);

Status3 = rsa_measure(RSA1, freq, ampltd);

Status4 = rsa_measure_next(RSA1, freq_next, ampltd_next);

This example shows how to return the frequency and amplitude of the next highest peak in a frequency
spectrum.

Also see

rsa_init (on page 2-83)

rsa_measure (on page 2-83)

rsa_setup (on page 2-86)

rsa_selftest

This command runs the specified RSA306B spectrum analyzer self-test and returns a status for the test.

Models supported

S530 (systems with an RSA306B USB Spectrum Analyzer)

In Keithley systems, the RSA306B functions as a replacement for discontinued scope cards.

Spectrum analyzer capabilities may be added in the future.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-86 S500-901-01 Rev. B / January 2019

Usage

int rsa_selftest(int instr_id, int testname, int *teststatus)

instr_id The instrument identification code of the spectrum analyzer; valid value RSA1

testname The name of a specific test to run; valid values are:

 RSA_ST_SV = Supply voltage

 RSA_ST_TEMP = Temperature sensor

 RSA_ST_AD_SPI = A/D SPI

 RSA_ST_LO1_TUN = LO1 tuning

 RSA_ST_LO2_TUN = LO2 tuning

 RSA_ST_PREAMP = Preamplifier

 RSA_ST_RF_ATT = RF attenuator

 RSA_ST_ME_AMP = ME amplifier

teststatus The status of the specified test:

0 = Test failed to complete

1 = Test completed successfully

-1 = Not supported

Details

The spectrum analyzer must be initialized before using this command.

This command allows you to run specific self-tests on the RSA306B and get the success-failure
status of the test.

Example

status = rsa_selftest(RSA1, RSA_ST_SV, teststatus)

In the Keithley Interactive Test Tool (KITT), runs a self-test of the spectrum analyzer (RSA1) supply voltage
and returns a success (1) or failure (0) status.

Also see

rsa_init (on page 2-83)

rsa_setup

This command sets the start, stop, and step (scan resolution) frequencies of a scan.

Models supported

S530 (systems with an RSA306B USB Spectrum Analyzer)

In Keithley systems, the RSA306B functions as a replacement for discontinued scope cards.

Spectrum analyzer capabilities may be added in the future.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-87

Usage

int rsa_setup(int instr_id, double min_freq, double max_freq, double res_bandwidth)

instr_id The instrument identification code

min_freq Start frequency of the scan in Hertz (Hz)

max_freq Stop frequency of the scan in Hz

res_bandwidth Step size (scan resolution in Hz): 1e6, 3e5, 1e5, 3e4, 1e4, 3e3, or 1000

Details

The spectrum analyzer must be initialized before using this command.

The recommended relationship of the res_bandwidth parameter for different spans of a scan is

listed in the following table.

Relationship of res_bandwidth and span

Frequency span res_bandwidth

60 MHz Span 1 MHz

20 MHz Span 60 MHz 300 kHz

6 MHz Span 20 MHz 100 kHz

2 MHz Span 6 MHz 30 kHz

300 kHz Span 2 MHz 10 kHz

100 kHz Span 300 kHz 3 kHz

This command returns a 0 if executed without error; a negative number indicates an error.

Example

double freq;

double ampltd;

.

.

.

Status1 = rsa_init(RSA1);

Status2 = rsa_setup(RSA1, 20e6, 850e6, 1e6);

Status3 = rsa_measure(RSA1, freq, ampltd);

 This example sets the start, stop, and step frequencies of a scan.

Also see

rsa_init (on page 2-83)

rsa_measure (on page 2-83)

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-88 S500-901-01 Rev. B / January 2019

rtfary

This command returns the force array determined by the instrument action.

Models supported

S530, S535, S540

Usage

int rtfary(double *results);

results The floating point array where the force values are stored

Details

This command eliminates the need to calculate the forced array in the application.

When this command is used with one of the sweep routines, you can determine the exact forced
value for each point in the sweep.

When the test sequence is executed, the sweep command initiates the first step of the voltage or

current sweep. The sweep then logs the force point that the buffer specified by the rtfary

command.

Locate the rtfary command before the sweep. The number of data points returned by the rtfary

command is determined by the number of force points generated by the sweep.

This command returns dual-site data for SITE0 and SITE1 if available (S535 systems only).

Also see

smeasX (on page 2-114)

sweepX (on page 2-118)

rttrigary

This command returns the measured values from a trigger operation

Models supported

S530, S535, S540

Usage

int rttrigary(double *results);

results The floating point array where the measured values are stored

Details

When used with the bsweepX or sweepX commands, this command allows you to view the data

results from the measure command used for a trigger.

Using this command with the bsweepX command allows you to determine the measured value for

each point in the sweep.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-89

When the test sequence is executed, the sweep command initiates the first step of the voltage or

current sweep. The sweep then logs the measure point in the array specified by the rttrigary

command.

Place the rttrigary command before the sweep. The number of data points returned by the

rttrigary command is determined by the number of measure points generated by the sweep.

This command returns dual-site data for SITE0 and SITE1 if available (S535 systems only).

Also see

bsweepX (on page 2-32)

sweepX (on page 2-118)

savgX

This command makes an averaging measurement for every point in a sweep.

Models supported

S530, S535, S540

Usage

int savgi(int instr_id, double *result, unsigned int count, double delay);

int savgv(int instr_id, double *result, unsigned int count, double delay);

int savgc(int instr_id, double *results, unsigned int count, double delay);

int savgg(int instr_id, double *results, unsigned int count, double delay);

instr_id The instrument identification code of the measuring instrument; SMUn, CMTRn,
VMTRn

result The floating point array where the results are stored

count The number of measurements made at each point before the average is computed

delay The time delay in seconds between each measurement within a given ramp step

Details

This command creates an entry in the measurement scan table. During any of the sweeping
commands, a measurement scan is done for every force point in the sweep. During each scan, a
measurement is made for every entry in the scan table. The measurements are made in the same
order in which the entries were made in the scan table.

The savgX command sets up the new scan table entry to make an averaging measurement. The

measurement results are stored in the array specified by the result parameter. The scan table is

cleared by an explicit call to the clrscn command or implicitly when the devint command is called.

When making each averaged measurement, the number of actual measurements specified by the

count parameter is made on the instrument at the interval specified by the delay parameter, and

then the average is calculated. This average is the value that is stored in the results array.

The savgc and savgg commands return dual-site data for SITE0 and SITE1 if available (S535

systems only).

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-90 S500-901-01 Rev. B / January 2019

Example

double res1[26];

.

.

conpin(GND, 3, 2, 0);

conpin(SMU1, 4, 0);

savgi(SMU1, res1, 8, 1.0E-3); /* Measure average */

 /* current 8 times per */

 /* sample; return results to */

 /* res1 array. */

sweepv(SMU1, 0.0, -50.0, 25, 2.0E-2); /* Generate */

 /* a voltage from 0 V */

 /* to -50 V over 25 steps.*/

This example gets the measurement data that is needed to create a graph that shows the capacitance
versus voltage characteristics of a variable-capacitance diode. This diode is operated in reverse-biased
mode. SMU1 outputs a voltage that sweeps from 0 through -50 V. Capacitance is measured 26 times

during the sweep. The results are stored in an array called res1.

Also see

clrscn (on page 2-34)

devint (on page 2-42)

scp_close

This command disconnects communications to the scope card.

Models supported

S530, S540 (systems with a Model 4200-SCP2HR scope card)

Usage

int scp_close(int instr_id);

instr_id The instrument identification code of the scope card

Details

This command returns a 0 if executed without error; a negative number indicates an error.

Example

scp_close(SCP1)

Disconnects communications to scope card 1.

Also see

None

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-91

scp_detect_peaks

This command returns frequencies in signal amplitude order.

Models supported

S530, S540 (systems with a Model 4200-SCP2HR scope card)

Usage

int scp_detect_peaks(int instr_id, double min_level, double lower_bound, double

upper_bound, double *freq_array, int nPeaks, double *amp_array, int nPeak1);

instr_id The instrument identification code

min_level The minimum amplitude in decibels; valid values: –50 dB to 20 dB; the peak
detected must be higher than this parameter (input)

lower_bound The measured peak is ignored if the ratio of measured frequencies versus returned

peaks is greater than or equal to this parameter; valid values 0.1% (0.001) to

100% (1.000) (input)

upper_bound The measured peak is ignored if the ratio of measured frequencies versus returned

peaks is less than or equal to this parameter; valid values 0.1% (0.001) to 100%

(1.000) (input)

freq_array The array output of measured peak frequencies in Hertz (output)

nPeaks The number of peak frequencies to return (valid values 1 to 5); zero (0) is returned

to fill the output array when the number of detected peaks is less than this
parameter (input)

amp_array The amplitude of the measured peak frequencies in dB (output)

nPeak1 This parameter must be the same as the nPeaks parameter (input)

Details

The scope card must be initialized before using this command.

Use this command to return a specified number of frequencies in signal amplitude order. The highest
peak is returned first, then the second highest peak is returned, and so on. If multiple peaks are
between the upper and lower bounds, the highest peak is returned and the others are ignored (see
the following figure).

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-92 S500-901-01 Rev. B / January 2019

Figure 2: Upper and lower bounds

If any detected peak frequency is less than or equal to the min_level parameter, that peak is

dropped and the frequency is returned as zero. If a detected peak frequency is a part of a
single-frequency spectrum, the peak is ignored.

Each measured peak frequency has a corresponding measured signal level returned in the

amp_array parameter.

Example

double freq[5];

double ampltd[5];

.

.

.

Status1 = scp_init(SCP1);

Status2 = scp_setup(SCP1, 20e6, 850e6, 1e6);

Status3 = scp_detect_peaks(SCP1, 6e-4, 0.7, 1.4, freq_array, 5, amp_array, 5);

This example sets up a spectrum analyzer to scan a 20 MHz to 850 MHz signal in 1 MHz steps and return five

detected peak frequencies that are within the specified values of the lower_bound and upper_bound

parameters.

Also see

scp_init (on page 2-93)

scp_setup (on page 2-96)

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-93

scp_init

This command initializes the scope card to its default state.

Models supported

S530, S540 (systems with a Model 4200-SCP2HR scope card)

Usage

int scp_init(int instr_id)

instr_id The instrument identification code of the scope card

Details

The scope card must be initialized before using the scp_detect_peaks command.

This command returns a 0 if executed without error; a negative number indicates an error.

Example

double freq;

double ampltd;

.

.

.

Status1 = scp_init(SCP1);

Status2 = scp_setup(SCP1, 20e6, 850e6, 1e6);

Status3 = scp_measure(SCP1, freq, ampltd);

This example shows how to initialize a scope card to its default state.

Also see

scp_detect_peaks (on page 2-91)

scp_measure

This command measures the frequency and amplitude of the strongest signal.

Models supported

S530, S540 (systems with a Model 4200-SCP2HR scope card)

Usage

int scp_measure(int instr_id, double *freq_result, double *amp_result)

instr_id The instrument identification code of the scope card

freq_result The measured frequency in Hertz (Hz)

amp_result The measured amplitude in decibels (dB)

Details

The scope card must be initialized before using this command.

This command returns a 0 if executed without error; a negative number indicates an error.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-94 S500-901-01 Rev. B / January 2019

Example

double freq;

double ampltd;

.

.

.

Status1 = scp_init(SCP1);

Status2 = scp_setup(SCP1, 20e6, 850e6, 1e6);

Status3 = scp_measure(SCP1, freq, ampltd);

This example shows how to measure the amplitude of the strongest signal.

Also see

scp_init (on page 2-93)

scp_setup (on page 2-96)

scp_measure_next

This command returns the frequency and amplitude of the next highest peak in the frequency spectrum.

Models supported

S530, S540 (systems with a Model 4200-SCP2HR scope card)

Usage

int scp_measure_next(int instr_id, double *freq_result, double *amp_result)

instr_id The instrument identification code of the scope card

freq_result The measured frequency in Hertz (Hz)

amp_result The measured amplitude in decibels (dB)

Details

The scope card must be initialized before using this command.

This command returns a 0 if executed without error; a negative number indicates an error.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-95

Example

double freq;

double ampltd;

double freq_next;

double ampltd_next;

.

.

.

Status1 = scp_init(SCP1);

Status2 = scp_setup(SCP1, 20e6, 850e6, 1e6);

Status3 = scp_measure(SCP1, freq, ampltd);

Status4 = scp_measure_next(SCP1, freq_next, ampltd_next);

This example shows how to return the frequency and amplitude of the next highest peak in a frequency
spectrum.

Also see

scp_init (on page 2-93)

scp_measure (on page 2-93)

scp_setup (on page 2-96)

scp_selftest

This command does an internal self-test of the scope card.

Models supported

S530, S540 (systems with a Model 4200-SCP2HR scope card)

Usage

int scp_selftest(int instr_id)

instr_id The instrument identification code of the scope card

Details

The scope card must be initialized before using this command.

This command returns a 0 if executed without error; a negative number indicates an error.

Example

Status1 = scp_selftest(SCP2);

Does a self-test of scope card 2 (SCP2).

Also see

scp_init (on page 2-93)

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-96 S500-901-01 Rev. B / January 2019

scp_setup

This command sets the start, stop, and step (scan resolution) frequencies of a scan.

Models supported

S530, S540 (systems with a Model 4200-SCP2HR scope card)

Usage

int scp_setup(int instr_id, double min_freq, double max_freq, double res_bandwidth)

instr_id The instrument identification code

min_freq Start frequency of the scan in Hertz (Hz)

max_freq Stop frequency of the scan in Hz

res_bandwidth Step size (scan resolution in Hz): 1e6, 3e5, 1e5, 3e4, 1e4, 3e3, or 1000

Details

The scope card must be initialized before using this command.

The recommended relationship of the res_bandwidth parameter for different spans of a scan is

listed in the following table.

Relationship of res_bandwidth and span

Frequency span res_bandwidth

60 MHz Span 1 MHz

20 MHz Span 60 MHz 300 kHz

6 MHz Span 20 MHz 100 kHz

2 MHz Span 6 MHz 30 kHz

300 kHz Span 2 MHz 10 kHz

100 kHz Span 300 kHz 3000 Hz

50 kHz Span 100 kHz 1000 Hz

This command returns a 0 if executed without error; a negative number indicates an error.

Example

double freq;

double ampltd;

.

.

.

Status1 = scp_init(SCP1);

Status2 = scp_setup(SCP1, 20e6, 850e6, 1e6);

Status3 = scp_measure(SCP1, freq, ampltd);

 This example sets the start, stop, and step frequencies of a scan.

Also see

scp_init (on page 2-93)

scp_measure (on page 2-93)

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-97

searchX

This command is used to determine the voltage or current required to get a current, voltage, capacitance, or

conductance. It is useful in finding initial threshold points such as junction breakdown or transistor turn on.

Models supported

S530, S535, S540

Usage

int searchi(int instr_id, double min_val, double max_val, unsigned int iterate_no,

double iterate_time, double *result);

int searchv(int instr_id, double min_val, double max_val, unsigned int iterate_no,

double iterate_time, double *result);

instr_id The instrument identification code of the sourcing instrument; SMUn or CMTRn

min_val The lower limit of the source range

max_val The upper limit of the source range

iterate_no The number of separate current or voltage levels to generate; the range of iterations
is from 1 through 16

iterate_time The duration, in seconds, of each iteration

result The floating point variable assigned to the search operation result; it represents the
voltage, with the searchv command, or current, with the searchi command,

applied during the last search operation

Details

The trigXg or trigXl command must be used with the searchX command. Triggers and the

searchX command together initiate a search operation consisting of a series of steps referred to as

iterations. During each iteration, the following events occur:

A voltage or current is applied to a circuit node of the device under test (DUT).

All triggers are evaluated.

If the triggers evaluate true, the source value is moved toward the value specified in the min_val

parameter. If the triggers do not evaluate true, the source value is moved toward the value

specified in the max_val parameter. The source range is then divided in half for the next

iteration.

A total of 16 iterations can be programmed. When all iterations are completed, a value of voltage or
current is returned as the result of the search operation. This value is the voltage or current level
required to match the trigger point.

The following example shows all binary search possibilities where the minimum and maximum source
values are 0 and 20 V, respectively. Note the following:

Three iterations, numbered one through three, are shown. Within a given iteration, the values of

possible sourcing voltages are indicated.

During the first iteration of the binary search process, 10 V is applied. This represents the

midpoint of the minimum and maximum values.

At the end of each iteration, the program determines whether to increase or decrease the source

voltage. The determination is dependent on the evaluation of the trigger point.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-98 S500-901-01 Rev. B / January 2019

Figure 3: Minimum and maximum source values

The question mark (?) is the true or false determination.

As shown in the above figure, the true or false decision determines the voltage generated in the next
step of the binary progression.

Because the command initiates a current or voltage from a source, its placement in a test sequence
is critical. Therefore:

Call the limitX and rangeX commands before the searchX command when all three refer to

the same instrument.

Call the trigXg or trigXl command before the searchX command.

The search operation determines the source voltage or current required at one circuit node to
generate a trigger point value at a second node. The resolution of the result depends on the number
of iterations or steps and the actual current or voltage range used by the instrument.

For example, assume the minimum and maximum values of the source range are from 0 V to 20 V,
and the number of iterations is 16. The 20 V level automatically initiates a source-measure unit (SMU)
20 V source range. As a result, the resolution of the final source voltage returned is:

This command is not supported in dual-site mode (S535 systems only).

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-99

Example

double ssbiasv, vgs1, vds1;

.

conpin(SMU1, 1, 0);

conpin(SMU2, 2, 0);

conpin(SMU3, 3, 0);

conpin(GND, 4, 0);

trigig(SMU2, +l.0E-6); /* Set trigger point for 1 uA. */

forcev(SMU3, ssbiasv); /* Apply a substrate bias */

 /* voltage ssbiasv. */

forcev(SMU2, vds1); /* Apply a drain voltage of */

 /* vds1. */

searchv(SMU1, 0.6, 1.7, 8, 1.0E-3, &vgs1); /* Set */

 /* for 8 steps from 0.6 to */

 /* 1.7 V at 1 ms.*/

 /* per iteration; return the */

 /* result to vgs1. */

This example searches for the gate voltage required to generate a drain current of 1 µA. Eight separate

gate voltages within the range of 0.6 V through 1.7 V are specified by the searchv command. After the

eight iterations complete, the drain current is close to 1 µA, and the searchv operation is terminated. The

gate voltage generated at this time by SMU1 is returned in the variable vgs1.

Also see

None

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-100 S500-901-01 Rev. B / January 2019

setauto

This command re-enables autoranging and cancels any previous rangeX command for the specified instrument.

Models supported

S530, S535, S540

Usage

int setauto(int instr_id);

instr_id The instrument identification code

Details

Due to the dual mode operation of the SMU (v versus i), setauto places both voltage and current

ranges in autorange mode.

The specific range is not changed until a measurement is made. When a measurement is made, the
autorange software evaluates the data and changes the range if necessary.

You can use this command in dual-site mode (S535 systems only).

Example

.

rangei(SMU1, 2.0E-9); /* Select manual range. */

delay(200); /* Delay after range change. */

measi(SMU1, &icer1); /* Measure leakage; return. */

.

.

setauto(SMU1); /* Enable autorange mode. */

lorangei(SMU1, 2.0E-6); /* Select 2 uA as minimum range */

 /* during autoranging. */

delay(200); /* Delay after range change. */

smeasi(SMU1, idatvg); /* Setup sweep measurement of IDS. */

sweepv(SMU2, 0.0, 2.5, 24, 0.002); /* Sweep gate from 0 V to 2.5 V. */

Also see

None

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-101

setmode

This command sets instrument-specific operating mode parameters.

Models supported

S530, S535, S540

Usage

int setmode(int instr_id, long modifier, double value);

instr_id The instrument identification code of the instrument being operated on

modifier The instrument-specific operating characteristic to change; refer to setmode
modifier tables (on page 2-102)

value The value of the modifier parameter

Details

The setmode command allows you to control certain instrument-specific operating characteristics.

A special instrument ID named KI_SYSTEM sets the setmode modifier for all instruments that support

the specified setmode.

All modifiers listed in the setmode modifier tables (on page 2-102) can be used with the KI_SYSTEM

pseudo-instrument.

You can use this command in dual-site mode (S535 systems only).

Example 1

double ic[10];

double vb[10];

conpin(SMU1, 1, 0);

conpin(SMU2, 2, 0);

conpin(GND, 3, 0);

setmode(SMU1, KI_INTGPLC, 0.025);

forcev(SMU2, 5.0);

sintgv(SMU1, vb);

smeasi(SMU2, ic);

sweepi(SMU1, 0.0, 1.0e-6, 9, 0.0);

The setmode command in this example specifies the period (0.025 AC line cycles) over which

measurements on SMU1 are averaged.

Example 2

setmode(KI_SYTEM, KI_MAX_VOLTAGE, 2000);

S540 system only: Sets the maximum voltage for all 2657A SMUs in the system to 2000 V.

Also see

setmode modifier tables (on page 2-102)

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-102 S500-901-01 Rev. B / January 2019

setmode modifier tables

Modifiers that affect the system

Modifier Value Comment

KI_MAX_VOLTAGE S540 system, 2657A SMUs only:
value

Where: value = 300 to 3000

Sets the maximum voltage for all
2657A SMUs in the S540
system. The default value is
3000 V.

Calling the devint command

resets this value to the MAX_HV

value defined in the
icconfig_<QMO>.ini file.

This setmode only affects the
2657A SMU; it does nothing on
other models.

KI_SYSTEM_SPEED_MODE KI_SYSTEM_SPEED_CUSTOM

Deprecated:

KI_SYSTEM_SPEED_LEGACY

CUSTOM mode allows you to

specify the default speed mode.

This setting is reset to the mode
defined in the
icconfig_<QMO>.ini file with

a call to the devint command.

NOTE: LEGACY mode was

deprecated in KTE version 5.8.0.
If you use KTE version 5.8.0 or
later, the LEGACY setting is

ignored and the default system
settings are used.
In KTE versions later than 5.6.0
but earlier than 5.8.0, LEGACY

mode could be used if you had
problems with correlation of data
using the default mode.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-103

Modifiers that affect source-measure unit (SMU) behavior

Modifier Value Comment

KI_AVGMODE 26xx and 2461-SYS:

KI_INTEGRATE
KI_MEASX

Controls the behavior of the
avgX command call.

KI_INTEGRATE replaces the

avgX command with the intgX

command.
KI_MEASX replaces the avgX

command with the measX

command.

KI_HIGHC_MODE 26xx and 2461-SYS:

KI_ON and KI_OFF

KI_OFF = Disable High C mode

KI_ON = Enable High C mode

KI_IMTR Sets up a source-measure unit
(SMU) as a current meter. The
ranges used are representative
of the type of instrument being
simulated. Note that this
setmode turns on the source.

KI_S400 Sets a SMU to use ranges
equivalent to the S400.

KI_DMM Sets a SMU to use ranges
equivalent to a DMM. Provides a
lower resolution, fast
measurement. Used for
high-current applications.

KI_ELECTROMETER Sets a SMU to use ranges
equivalent to an electrometer.
Provides the best measurement
resolution but slower
measurement time. Used for
low-current applications.

KI_INTGPLC CMTR: 0.006 to 10.002

24xx: 0.01 to 10 (S530 only)

26xx: 0.001 to 25

2461-SYS: 0.01 to 10

Defines a period in terms of AC
line cycles over which
measurements are averaged.
Note that the default NPLC value
differs when using certain
commands. See "Using NPLCs
to adjust speed and accuracy" in
the reference manual for your
system.

KI_LIM_INDCTR Any number Controls what measure value is
returned if the SMU is at its
programmed limit. The devint

command default is

SOURCE_LIMIT (7.0e22).

Note that the SMU always

returns INST_OVERRANGE

(7.0e22) if it is on a fixed range

that is too low for the signal
being measured.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-104 S500-901-01 Rev. B / January 2019

Modifiers that affect source-measure unit (SMU) behavior (continued)

Modifier Value Comment

KI_LIM_MODE KI_INDICATOR
KI_VALUE

Controls whether the SMU
returns an indicator value
when in limit or overrange, or
the actual value measured.
The default mode after a

devint command is to return

a value.

KI_MEAS_DELAY 26xx (2461-SYS not supported):

KI_DELAY_OFF
KI_DELAY_AUTO
value

Controls measurement delays
on a SMU. You can choose to
turn the delay off, have the
instrument set the delay, or
specify a value in seconds.
KI_DELAY_AUTO is the default

setting.
Note that reducing measure
delays may cause the SMU to
return unsettled or inaccurate
readings.

KI_MEAS_DELAY_FACTOR 26xx (2461-SYS not supported): value When the KI_MEAS_DELAY

modifier is set to
KI_DELAY_AUTO, specifying

this modifier multiplies the
delay values that are stored in
the 26xx SMU by the specified
value.

KI_SENSE 26xx and 2461-SYS:

KI_SENSE_LOCAL or 0

KI_SENSE_REMOTE or 1

Controls the sense mode of
the 26xx SMU (2-wire or 4-wire
mode).

0 = Local sense mode (2-wire)

1 = Remote sense mode

(4-wire)

KI_SETTLE_MODE 26xx (2461-SYS not supported): Changes the source settling
mode.

KI_SETTLE_SMOOTH Turns off additional settling
operations.

KI_SETTLE_FAST_RANGE Sets the SMU to use a faster
procedure when changing
ranges

KI_SETTLE_FAST_POLARITY Sets the SMU to change
polarity without going to zero.

KI_SETTLE_DIRECT_IRANGE Default setting; sets the SMU
to change the current range
directly.

KI_SETTLE_FAST_ALL Enables all settle fast modes.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-105

Modifiers that affect source-measure unit (SMU) behavior (continued)

Modifier Value Comment

KI_VMTR Sets up a SMU as a voltmeter.
The ranges used are
representative of the type of
instrument being simulated.
Note that this setmode turns
on the source.

KI_S400 Sets a SMU to use ranges
equivalent to the S400.

KI_DMM Sets a SMU to use ranges
equivalent to a DMM. Provides
a low impedance, fast
measurements. Used for
low-voltage applications.

KI_ELECTROMETER Sets a SMU to use ranges
equivalent to an electrometer.
Provides high-input impedance
but has slower measurement
time. Used for high-resistance
measurements.

KI_VMTR_FUNC DMM7510

KI_VMTR_FUNC_ACV

KI_VMTR_FUNC_DCV

Sets up the DMM7510 as a
voltmeter using the DCV or
ACV measure function. The
default value is

KI_VMTR_FUNC_DCV.

KI_2600_ANALOG_FILTER 26xx (2461-SYS not supported):

KI_ON

KI_OFF

Turns the analog filter on or off
for a specified SMU.

Modifiers that affect triggering

Modifier Value Comment

KI_AVGNUMBER 4200A and 2410

value

Number of readings to make

when KI_TRIGMODE is set to

KI_AVERAGE.

NOTE: This setmode modifier is

valid for the 4200A and 2410
only. If used with any other
model, you will get a "NO-OP"
error.

KI_AVGTIME value Time between readings when
KI_TRIGMODE is set to

KI_AVERAGE.

NOTE: This setmode modifier is

valid for the 4200A and 2410
only. If used with any other
model, you will get a "NO-OP"
error.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-106 S500-901-01 Rev. B / January 2019

Modifiers that affect triggering

Modifier Value Comment

KI_TRIGMODE 4200A and 2410:

KI_MEASX
KI_INTEGRATE
KI_AVERAGE

Redefines all existing triggers to
use a new method of
measurement.
NOTE: These setmode modifier

values are valid for the 4200A
and 2410 only. If used with any
other model, you will get a
"NO-OP" error.

KI_ABSOLUTE
KI_NORMAL

Use absolute value or polarized
readings for trigger condition.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-107

Modifiers that affect CVU measurements

Modifier Value Comment

KI_CVU_ACV value 10 mV to 100 mV (45 mV is
default)

KI_CVU_ACZ_RANGE value 0 = Autorange (default)

1e-6 = 1 µA range

30e-6 = 30 µA range

1e-3 = 1 mA range

KI_CVU_CORRECT LOAD 0 or 1 0 = Off (default)

1 = On

KI_CVU_CORRECT_OPEN 0 or 1 0 = Off (default)

1 = On

KI_CVU_CORRECT_SHORT 0 or 1 0 = Off (default)

1 = On

KI_CVU_FREQ value 1 kHz to 2 MHz (100 kHz is
default)

KI_CVU_LENGTH KI_CVU_CABLE_CORR_LV
KI_CVU_CABLE_CORR_HV
KI_CVU_CABLE_CORR_LV_HV

Specifies the type of cables
used in the system so that
cable-length corrections can be
automated.

KI_CVU_MODE 0 or 1 0 = User mode

1 = System mode (default)

KI_CVU_MODEL 0 to 5 0 = Z, theta

1 = R, jx

2 = Cp, Gp (default)

3 = Cs, Rs

4 = Cp, D

5 = Cs, D

KI_CVU_SPEED 0 to 2 0 = Fast (default)

1 = Normal

2 = Quiet

Does not affect the intgc,

intgg, or intgcg LPT

commands. To adjust the speed
of these LPT commands, use

the KI_INTGPLC setmode.

Modifiers that affect matrix operation

Modifier Value Comment

KI_AUTO_GND_PINS 70xB: 0 or 1 Enable or disable the feature that
automatically connects all unused
pins to GND (including the
CHUCK).

0 = Disable

1 = Enable

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-108 S500-901-01 Rev. B / January 2019

setXmtr

This command allows a source to operate as a voltmeter or current meter. The source function is disabled after

calling the setXmtr command.

Models supported

S530, S535, S540

Usage

int setimtr(int instr_id);

int setvmtr(int instr_id);

instr_id The instrument identification code of the instrument to control; SMUn

Details

Use x = v for volts and i for current.

The setXmtr command does not affect any existing connections.

Note that the setvmtr command operates as a current source with 0.0 A output. It also activates the

voltmeter function of the instrument. Additionally, the setimtr command operates as a voltage

source with 0.0 V output; it also activates the current meter function of the instrument.

The effects of the setXmtr command are also cleared when a devint or device initialize

command is called at the end of the test sequence.

You can use this command in dual-site mode (S535 systems only).

Example

float vcc12, icc8, ib47;

.

.

conpin(SMU1H, 1, 0);

conpin(SMU2H, 2, 0);

conpin(SMU3H, 3, 0);

setimtr(SMU1); /* Set SMU1 as a current meter only. */

forcev(SMU3, vcc12); /* Apply vcc12V to collector. */

forcei(SMU2, icc8); /* Enable icc8 current through emitter. */

measi(SMU1, &ib47); /* Measure base current return result */

 /* to ib47. */

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-109

This figure shows a transistor beta measurement at a specified emitter current and collector-base voltage.

Also see

devint (on page 2-42)

sintgX

This command makes an integrated measurement for every point in a sweep.

Models supported

S530, S535, S540

Usage

int sintgi(int instr_id, double *result);

int sintgv(int instr_id, double *result);

int sintgc(int instr_id, double *result);

int sintgg(int instr_id, double *result);

instr_id The instrument identification code of the measuring instrument; SMUn, VMTRn,
CMTRn

result The floating point array where the results are stored

Details

Use this command to create an entry in the measurement scan table. During any of the sweeping
commands, a measurement scan is performed for every force point in the sweep. During each scan,
a measurement is made for every entry in the scan table. The measurements are made in the same
order in which the entries were made in the scan table.

The sintgX command sets up the new scan table entry to make an integrated measurement. The

scan table is cleared by an explicit call to the clrscn command or implicitly when the devint

command is called.

The sintgi and sintgv commands return dual-site data for SITE0 and SITE1 if available (S535

systems only).

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-110 S500-901-01 Rev. B / January 2019

Example

float idss[16];

.

.

conpin(SMU1, 2, 0);

conpin(GND, 5, 4, 3, 0);

limiti(SMU1, 1.5E-8);

rangei(SMU1, 2.0E-8); /* Select range for 20 nA. */

sintgi(SMU1, idss); /* Measure current with SMU1;*/

 /* return results to idss. */

.

.

sweepv(SMU1, 0.0, 25.0, 15, /* Perform 16 measurements */

 1.0E-3); /* (steps) from 0 through */

. /* 25 V; each step 1 ms in */

. /* duration. */

This example collects information on the low-level gate leakage current of a metal-oxide field-effect
transistor (MOSFET). Sixteen integrated measurements are made as the voltage is increased from 0 V to
25 V.

Also see

clrscn (on page 2-34)

devint (on page 2-42)

sweepX (on page 2-118)

site_disable

This command disables the specified site ID.

Models supported

S535

Usage

int site_disable(int siteid);

siteid Specifies a site to disable (input); valid values:

KI_SITE0 = Disable the anchor site

KI_SITE1 = Disable the mirror site

Details

Set siteid to KI_SITE0 to specify the anchor site and KI_SITE1 to specify the mirror site. Any

measurements for disabled sites return 1.138E26, a unique value indicating SITE_INACTIVE.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-111

Dual-site settings specified by the site_enable and site_disable commands are not reset by

the devint command.

When dual-site mode is disabled, this command returns error code KTE_FEATURE_DISABLED.

Calls to this command are built into the Keithley Test Execution Engine (KTXE) if you specify this

parameter in the wafer description file (.wdf).

To enable a site, see site_enable (on page 2-111).

For more information about using dual-site mode, see "Dual-site operation" in the S535 Reference
Manual (part number S535-901-01).

Example

site_enable(KI_SITE0);

site_disable(KI_SITE1);

conpin(SMU1, 1);

conpin(GND, 2);

forcev(SMU1, 10.0);

measi(SMU1, &i[0]);

This example enables the anchor site and disables the mirror site, then forces voltage and measures

current. i[KI_SITE0] contains measured data from the anchor site; i[KI_SITE1] contains

SITE_INACTIVE.

site_enable

This command enables dual-site mode for the specified site ID.

Models supported

S535

Usage

int site_enable(int siteid);

siteid Specifies a site to enable (input); valid values are:

KI_SITE0 = Enables the anchor site

KI_SITE1 = Enables the mirror site

Details

Set siteid to KI_SITE0 to specify the anchor site and KI_SITE1 to specify the mirror site. When a

site is enabled, measurements are stored in the result data array entry for that site. To access the

data for the specified site, use siteid as the index for the results data array.

Dual-site settings specified by the site_enable and site_disable commands are not reset by

the devint command.

When dual-site mode is disabled, this command returns error code KTE_FEATURE_DISABLED.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-112 S500-901-01 Rev. B / January 2019

Calls to this command are built into the Keithley Test Execution Engine (KTXE) if you specify this

parameter in the wafer description file (.wdf).

To disable a site, see the site_disable (on page 2-110) command.

For more information about using dual-site mode, see "Dual-site operation" in the S535 Reference
Manual (part number S535-901-01).

Example

site_enable(KI_SITE0);

site_enable(KI_SITE1);

conpin(SMU1, 1, 0);

conpin(GND, 2, 0);

forcev(SMU1, 10.0);

measi(SMU1, &i[0]);

This example enables both the anchor site and the mirror site. i[KI_SITE0] contains data from the

anchor site; i[KI_SITE1] contains data from the mirror site.

site_mapping

This command creates a new pin mapping between SITE0 and SITE1.

Models supported

S535

Usage

int site_mapping(int site_id, int *site_pinlist, int num_pins);

site_id An integer value representing the site to add to the pin mapping (input); valid
values:

KI_SITE0 = Specifies a new pin map for the anchor site

KI_SITE1 = Specifies a new pin map for the mirror site

site_pinlist Integer array containing a list of pins for the site (input)

num_pins The number of pins in the pinlist arrays (input); valid values:

1 to X

Details

Pins of matching index in each array become dual pins. When you call the conpin command in test

code, the dual pins close automatically to connect SITE1 instruments to the dual site.

When dual-site mode is disabled, this command returns error code KTE_FEATURE_DISABLED.

All pins in the pinlist must be valid pins that are defined in the icconfig_<QMO>.ini file. Pins in

site0_pinlist must not have entries in the site1_pinlist, and conversely, pins in the

site1_pinlist must not have entries in the site0_pinlist.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-113

If you have a chuck connected in an S535 system that is in dual-site mode, the pin the chuck is on

cannot be mirrored.

Any given pin may have only one entry in the array. This function inspects each array value to make
sure that no invalid pins are specified. If any of these error cases are detected, the function generates

error MX_INVALID_PIN_MAPPING.

Unlike other LPT commands, dual-site pin mapping changes are permanent and do not reset to

default when the devint command is called.

For more information about using dual-site mode, see "Dual-site operation" in the S535 Reference
Manual (part number S535-901-01).

Example

int site0[4] = {1, 2, 3, 4};

int site1[4] = {5, 6, 7, 8};

site_mapping(KI_SITE0, &site0[0], 4);

site_mapping(KI_SITE1, &site1[0], 4);

conpin(SMU1, 1, 0);

forcev(SMU1, 10.0);

In this example, SMU1 forces 10 V on pin 1 and the corresponding mirror SMU forces 10 V on pin 5.

site_status

This command reads the state of the specified site and places it in the state variable.

Models supported

S535

Usage

int site_status(int siteid, int *state);

siteid Specifies the site to read (input); valid values:

KI_SITE0 = The anchor site

KI_SITE1 = The mirror site

state The variable that receives the site status (output)

KI_ON = Site enabled

KI_OFF = Site disabled

Details

This function sets the state variable to KI_ON if the site is enabled and KI_OFF if it is disabled.

Dual-site settings specified by the site_enable and site_disable commands are not reset by

the devint command.

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-114 S500-901-01 Rev. B / January 2019

When dual-site mode is disabled, this command returns error code KTE_FEATURE_DISABLED.

For more information about using dual-site mode, see "Dual-site operation" in the S535 Reference
Manual (part number S535-901-01).

Example

int state = KI_OFF;

site_enable(KI_SITE0);

site_status(KI_SITE0, &state);

/* state is now set to KI_ON.*/

This example enables SITE0 and reads the state variable (KI_ON).

smeasX

This command allows a number of measurements to be made by a specified instrument during a sweepX

command. The results of the measurements are stored in the defined array.

Models supported

S530, S535, S540

Usage

int smeasi(int instr_id, double *result);

int smeast(int instr_id, double *result);

int smeasv(int instr_id, double *result);

int smeasc(int instr_id, double *result);

int smeasg(int instr_id, double *result);

instr_id The instrument identification code of the measuring instrument

result The floating point array that stores the results

Details

This command is used to create an entry in the measurement scan table. During any of the sweep
commands, a measurement scan is done for every force point in the sweep. During each scan, a
measurement is made for every entry in the scan table. The measurements are made in the same
order in which the entries were made in the scan table.

The smeasX command sets up the new scan table entry to make an ordinary measurement. The

scan table is cleared by an explicit call to the clrscn command or implicitly when the devint

command is called.

The smeasi, smeast, and smeasv commands return dual-site data for SITE0 and SITE1 if available

(S535 systems only).

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-115

Example

double resi[13]; /* Defines array. */

.

.

conpin(SMU1, l, 0);

conpin(GND, 2, 0);

smeasi(SMU1, resi); /* Make a series of */

 /* measurements; */

 /* return the results to the */

 /* resi array. */

sweepv(SMU1, 0.0, 0.3, 12, 25.0E-3); /* Make 13 measurements as the */

 /* voltage ranges from 0 to */

 /* 0.3V. */

This example determines the measurement data needed to create a graph showing the negative
resistance characteristics of a tunnel diode. SMU1 generates a voltage ramp ranging from 0 to 0.3 V. The
current through the diode is sampled 13 times with a duration of 25 ms at each step. The results are stored

in an array named resi.

Also see

clrscn (on page 2-34)

devint (on page 2-42)

sweepX (on page 2-118)

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-116 S500-901-01 Rev. B / January 2019

ssmeasX

This command makes a series of readings until the change (delta) between readings is within a specified

percentage.

Models supported

S530, S535, S540

Usage

int ssmeasi(int instr_id, double *result, double delta, unsigned int max_read, double

delay);

int ssmeasv(int instr_id, double *result, double delta, unsigned int max_read, double

delay);

instr_id The instrument identification code of the measuring instrument; SMUn or VMTRn

result The floating point variable assigned to the result of the measurement

delta The termination definition; this is the percentage of the first reading that defines the
steady-state condition

max_read The maximum number of readings made to determine whether or not the reading is
steady

delay The delay between readings to wait in seconds

Details

This command is used when device stability is uncertain. It continually reads the instrument until the
resulting measurement is stable and provides the fastest measurement possible.

If the reading never stabilizes because of factors such as oscillations or charge and discharge, this

reading count expires and a reading of MEAS_NOT_PERFORMED (1.00E23) is returned.

Any instrument that uses the measX command can use the ssmeasX command. This command calls

the measX command for each reading. Any rangeX command rule applies to this command.

The ssmeasX command is used when making single-point readings. It is not used for any of the

combination measurements, such as the XsweepY and trigXY commands.

Under certain test conditions, the ssmeasX command is not ideal. For example, an oscillation where

two contiguous measurements are within the given percentage will return a stable reading, even
though the device cannot be measured.

This command returns dual-site data for SITE0 and SITE1 if available (S535 systems only).

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-117

Example

double meascur;

.

.

conpin(SMU3, 12, 0); /* Make connections. */

conpin(SMU2, 10, 0);

setimtr(SMU2);

.

.

forcev(SMU3, 0.1); /* Perform the test. */

ssmeasi(SMU2, &meascur, 0.1, 300, 0.015); /* Steady */

 /* state measurement /*

 /* with delta of 0.1%, with */

 /* maximum of 300 readings */

. /* before error, wait 15 ms */

. /* between readings. */

This example makes a series of measurements and tests to verify if the present measurement and the
previous measurement are within 0.1%. If the measurements are within 0.1%, the result of the last
measurement is stored and the program continues. If the measurements are not within 0.1%, the program
waits 15 ms before making another measurement. It then compares this measurement with previous
measurements. If the measurements are within 0.1%, the result of the last measurement is stored and the
program continues. If the measurements are not within 0.1% it repeats the comparison until the change is
within 0.1%. If, after 300 attempts, the change is not within the specified limit, the following error is
returned:

"MEAS_NOT_PERFORMED (l.000E23)."

Also see

measX (on page 2-61)

rangeX (on page 2-77)

smeasX (on page 2-114)

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-118 S500-901-01 Rev. B / January 2019

sweepX

This command generates a ramp consisting of ascending or descending voltages or currents. The sweep consists

of a sequence of steps, each with a user-specified duration.

Models supported

S530, S535, S540

Usage

int sweepi(int instr_id, double startval, double endval, long stepno, double

step_delay);

int sweepv(int instr_id, double startval, double endval, long stepno, double

step_delay);

instr_id The instrument identification code of the sourcing instrument

startval The initial voltage or current level output from the sourcing instrument, which is
applied for the first sweep measurement; this value can be positive or negative

endval The final voltage or current level applied in the last step of the sweep; this value can
be positive or negative

stepno The number of current or voltage changes in the sweep; the actual number of
forced data points is one greater than the number of steps specified

step_delay The delay in seconds between each step and the measurements defined by the
active measure list

Details

The sweepX command is always used with the smeasX, sintgX, savgX, or rtfary command.

The sweepX command causes a sourcing instrument to generate a series of ascending or

descending voltages or current changes called steps. During this source time, a measurement scan is
done at each step.

The actual number of forced data points is one more than the number of steps specified. This means

that the number of measurements made is the number of steps specified plus one. This is important

when dimensioning the size of the results array. Failure to make sure the array is big enough will

produce operating system access violation errors.

Measurements are stored in an array in the order they were made.

The trigXg and trigXl commands can be used with the sweepX command, even though they are

also used with the smeasX, sintgX, or savgX commands. In this case, data resulting from each of

the steps is stored in an array, as noted above. However, once a trigger point (for example, a level of
current or voltage) is reached, the sourcing device stops incrementing or decrementing and is held at
a steady output level for the remainder of the sweep.

The clrscn command is used to eliminate the previous measures for the second sweep. Using the

smeasX, sintgX, or savgX command after a clrscn command causes the appropriate new

measures to be defined and used.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-119

When the first sweep point is nonzero, it may be necessary to precharge the circuit so that the

sweepX command will return a stable value for the first measured point without penalizing remaining

points in the sweep. For example:

double ires[6];

conpin(SMU1, 10);

conpin(2, GND, 0);

forcev(SMU1, 5.0); /* Force 5 V to charge. */

delay(10); /* Wait for precharge. */

smeasi(SMU1, &ires); /* Set up the measurement. */

sweepv(SMU1, 5.0, 10.0, 5, /* Make the real measurement. */

 2.5E-3);

You can use this command in dual-site mode (S535 systems only).

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-120 S500-901-01 Rev. B / January 2019

Example

double resi[11], ssbiasv;

.

.

conpin(SMU1, 1, 0);

conpin(SMU2, 2, 0);

conpin(SMU3, 3, 0);

conpin(GND, 4, 0);

forcev(SMU3, ssbiasv); /* Apply substrate bias */

 /* voltage ssbiasv. */

forcev(SMU1, -.1); /* Apply a gate-to-source */

 /* voltage of -0.1 V. */

smeasi(SMU2, resi); /* Perform a series of current */

 /* measurements; return */

 /* the results to the array */

 /* resi. */

sweepv(SMU2, 0.0, 5.0, 10, 2.5E-3); /* Generate */

 /* 11 steps and 11 */

 /* points each 2.5 ms duration, */

 /* ranging from 0 V to 5V. */

This example gathers data to create a graph showing the common drain-source characteristics of a
field-effect transistor (FET). A fixed gate-to-source voltage is generated by SMU1. A voltage ramp from 0 V
to 5 V is generated by SMU2. Drain current applied by SMU2 is measured 11 times by the smeasi

command. Data is stored in the array resi.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-121

Also see

rtfary (on page 2-88)

savgX (on page 2-89)

sintgX (on page 2-109)

smeasX (on page 2-114)

trigXg, trigXl

This command monitors for a predetermined level of voltage, current, conductance, capacitance, or time.

Models supported

S530, S535, S540

Usage

int trigig(int instr_id, double value);

int trigil(int instr_id, double value);

int trigtg(int instr_id, double value);

int trigtl(int instr_id, double value);

int trigvg(int instr_id, double value);

int trigvl(int instr_id, double value);

instr_id The instrument identification code of the monitoring instrument

value The voltage, current, conductance, capacitance, or time specified as the trigger
point; this trigger point value is reached when either of the following occurs:

 The measured value is equal to or greater than the value argument of the

trigXg command

 The measured value is less than the value argument of the trigXl

command

Details

The trigXl and trigXg commands are used with the searchX command or with one of the sweep

measurement commands: smeasX, sintgX, or savgX.

The trigXg or trigXl command provides the sweepX command the digital feedback to allow

for the increase or decrease in sourcing values.

The trigXl and trigXg commands must be located before any associated searchX

commands.

Triggers are not automatically reset by the searchX or sweepX command. A single call to the

trigXl or trigXg command can be followed by two or more calls to the searchX or sweepX

commands.

The specified trigger point is automatically cleared when a clrtrg or devint command is executed.

You can use this command in dual-site mode (S535 systems only).

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-122 S500-901-01 Rev. B / January 2019

Example 1

double res22, vcc8;

.

.

conpin(SMU1, 3, 0);

conpin(SMU2, 2, 0);

conpin(GND, 1, 0);

forcev(SMU2, vcc8); /* Apply collector voltage to vcc8. */

trigig(SMU2, +5.0E-3); /* Search for a collector */

 /* current of 5 mA. */

searchi(SMU1, 5.0E-5, 2.0E-4, 15, 1.0E-3, &res22); /* Generate */

 /* a current ranging */

 /* from 50 uA to 200 uA in */

 /* 15 iterations. Return the */

 /* current resulting from the */

 /* last iteration as res22. */

This example uses the trigig and searchi commands together to generate and search for a specific

current level. A search is initiated to find the base current needed to produce 5 mA of collector current. The
collector-emitter voltage supplied by SMU2 is defined by the variable vcc8. The searchi command

generates the base current from SMU1. This current ranges between 50 mA and 200 mA in 15 iterations.
The trigig command continuously monitors the current through SMU1. The base current supplied by

SMU1 is stored as the result res22.

Keithley Test Environment (KTE) Programmer's Manual Section 2: LPTLib command reference

S500-901-01 Rev. B / January 2019 2-123

Example 2

double res1[19];

.

.

conpin(SMU1, 1, 0);

conpin(GND, 2, 0);

trigil(SMU1, +5.0E-3); /* If greater than -5 mA, */

 /* stop ramping. */

smeasi(SMU1, res1); /* Measure current at each of */

 /* the 19 levels; return */

 /* results to the res1 array. */

sweepv(SMU1, 0.6, 0.0, 18, 1.00E-3); /* Generate*/

 /* 0.6 V to 0.0 V in 19 steps. */

This example sets up and generates a sweep from 0.6 V to 0.0 V in 19 steps.

Also see

savgX (on page 2-89)

searchX (on page 2-97)

sintgX (on page 2-109)

smeasX (on page 2-114)

sweepX (on page 2-118)

Section 2: LPTLib command reference Keithley Test Environment (KTE) Programmer's Manual

2-124 S500-901-01 Rev. B / January 2019

tstsel

This command enables or disables a test station.

Models supported

S530, S535, S540

Usage

tstsel(long x);

x The test station number: 1

Details

Only one test station can be active at a time.

The tstsel command is normally called at the beginning of a test program. Only one call to the

tstsel command per program is recommended.

Calling a new test station within a test program cancels any previous tstsel calls.

To relinquish control of an individual test station so another station can access the system, call the

tstsel command with a value of zero (0). A new test station must then be selected before any

subsequent test control commands are run.

Attempting to run a test program on an already active test station causes the message "Error:

tstsel failed with status = -653. Exiting" to be displayed.

The tstsel command is not required for use in a user test module (UTM).

You can use this command in dual-site mode (S535 systems only).

Also see

None

In this section:

Introduction .. 3-1
How to use the library reference .. 3-2
Categorized subroutine lists ... 3-4
Subroutine descriptions .. 3-6

Introduction

The Keithley Test Environment (KTE) Parametric Test Subroutine Library (PARLib) is a parameter

extraction and data analysis software system. The PARLib subroutines are used to analyze data

associated with parametric tests.

This section contains detailed descriptions of the PARLib subroutines. It is intended as a reference

guide for experienced users.

The PARLib subroutines use the C programming language to make measurements for very specific

applications. The PARLib subroutines are grouped in the following categories:

Bipolar subroutines

Resistors, diodes, capacitors, and special structure subroutines

MOSFET subroutines

FET and JFET subroutines

Math and support subroutines

The Subroutine descriptions (on page 3-6) contain information specific to the type of structure you are

testing, including voltage and current polarities between pins on the device under test (DUT).

The descriptions also include (where applicable) a description of what each source-measure unit

(SMU) in the test configuration does and a simplified schematic showing the configuration of

instruments and devices in the subroutine.

Section 3

PARLib command reference

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-2 S500-901-01 Rev. B / January 2019

How to use the library reference

The subroutines in the Test subroutine library reference are in the C programming language. Each

subroutine is presented in a standard format that follows the pattern below:

Purpose statement: The first line of text under the subroutine heading contains a brief

explanation of what the subroutine does.

Figure 4: Example purpose statement

Usage: A line of code representing the prototype of the subroutine, followed by a table listing the

input and output parameters for the subroutine.

Parameters that you specify are shown in monospace italic font. Parameters preceded by an

asterisk (*) are character parameters that are passed into the function (input) or pointers to

information that is returned (output).

Each parameter is preceded by one of the following declarations that specifies the data type for

the parameter: int (integer), double (double-precision floating-point), and char (a character

string).

Figure 5: Example syntax and parameter definition

Details: Additional information about using the subroutine.

Figure 6: Example details

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-3

V/I polarities: The polarities of the current or voltage flow between the pins of the device; based

on whether you are using an NPN or PNP transistor. This information is only applicable in some

subroutines.

Figure 7: Example V/I polarities information

Source-measure units (SMUs): A description of what each SMU in the test configuration does in

the subroutine. This information is only applicable in some subroutines.

Figure 8: Example SMUs description

Example: A line of code showing what a call to the command might look like in actual use.

Figure 9: Example of actual command call

Schematic: A simplified schematic showing the configuration of the instruments and devices for

the subroutine. This information is only applicable in some subroutines.

Figure 10: Example schematic

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-4 S500-901-01 Rev. B / January 2019

Categorized subroutine lists

The subroutine descriptions are listed in alphabetical order in Subroutine descriptions (on page 3-6).

The tables that follow contain all of the subroutines grouped by function, with a brief description of the

purpose of the subroutine and a hyperlink to the full subroutine description.

Bipolar subroutines

Subroutine Description

beta1 Calculate DC at specified IE and VCB

beta2 Calculate DC and VBE at specified IC and VCE

beta2a Calculate at VCB and ICE with search on IE

beta3a Calculate at VCE and ICE with search on IBE

bice Calculate when VBE swept, at VCE and VSUB

bvcbo Measure collector-base breakdown voltage, emitter open

bvcbo1 Measure collector-base breakdown voltage using LPTLib bsweepv subroutine

bvceo Measure collector-emitter breakdown voltage, base open

bvceo2 Measure collector-emitter breakdown voltage using LPTLib bsweepv subroutine

bvces Measure collector-emitter breakdown voltage

bvebo Measure emitter-base breakdown voltage, collector open

ibic1 Measure ICE, IBE and calculate at VCE, VBE, VSUB

icbo Measure collector-base leakage at VCB and VSUB

iceo Measure collector-emitter leakage at VCE and VSUB

ices Measure emitter-collector leakage at VCES and VSUB

iebo Measure emitter-base leakage at VEB and VSUB

rcsat Estimate rcsat when IC and IB swept at constant

re Estimate emitter resistance

vbes Measure base-emitter voltage at specified IE (VC = VB)

FET and JFET subroutines

Subroutine Description

gm Estimate MESFET transconductance at VDS, VGS

idss Estimate MESFET IDSS and VDSAT at VDSS

vp Estimate FET pinch-off voltage for a MESFET

vp1 Estimate MESFET pinch-off at IDS (IP) and VDS

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-5

Math and support subroutines

Subroutine Description

fnddat Search an array, return a new array

fndtrg Determine which native mode trigger to use

kdelay Delay, based on current and voltage values

logstp Create an array using logarithmic steps

tdelay Return calculated delay time

MOSFET subroutines

Subroutine Description

bvdss Measure drain-source breakdown voltage (VG = 0)

bvdss1 Measure drain-source breakdown voltage using LPTLib bsweepv subroutine

deltl1 Estimate delta L MOSFET parameter

deltw1 Estimate delta W for a MOSFET

gamma1 Estimate body effect ()

gd Calculate drain conductance of a MOSFET

id1 Measure drain current at specified VGS, VDS, and VBS

idsat Measure drain current at VDS, VBS (VD = VG)

idvsvg Measure IDS when VGS is swept at constant VDS and VBS

isubmx Find peak substrate current at VDS,VBS

vg2 Measure gate-source voltage at IDS, VDS, VBS

vgsat Measure VGSAT at specified IDS (VGS = VD)

vt14 Estimate VT using two-point technique

vtati Find VT to produce specified IDS

vtext Extrapolate gate-source threshold voltage

vtext2 Estimate VT using modified vtext subroutine method

vtext3 Calculate VT using max slope method

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-6 S500-901-01 Rev. B / January 2019

Resistors, diodes, capacitors, and special structure subroutines

Subroutine Description

bkdn Measure breakdown voltage (force I, measure V)

cap Measure two-terminal capacitance

fimv Force current and measure voltage on device with four high pins and four ground pins

fvmi Force voltage and measure current on device with four input pins and four ground pins

leak Measure leakage current at specified voltage

res 2-terminal resistance (force I, measure V)

res2 2-terminal resistance with voltage limit

res4 4-terminal resistance (force I, measure V)

resv 2-terminal resistance (force V, measure I)

rvdp 4-terminal van der Pauw measurement

tox Calculate oxide thickness from capacitance

vf Measure the forward junction voltage of a diode

Subroutine descriptions

The following topics contain detailed descriptions of the Parametric Test Subroutine Library (PARLib)

commands.

beta1

This subroutine calculates the DC beta () of a test device at constant emitter current (IE) and collector-base bias

(VCB). The device is in the common-base configuration.

Usage

double beta1(int e, int b, int c, int sub, double ie, double vcb, char type);

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

ie Input The forced emitter current, in amperes

vcb Input The forced c to b bias, in volts

type Input Type of transistor: 'N' or 'P'

Returns Output The calculated beta of the device:

 -1.0 = TYPE not 'N' or 'P'

 -2.0 = SMU2 overload

 -3.0 = Divide by 0, or < 0.01

 -4.0 = > 10 K or IB wrong sign

 -5.0 = Emitter voltage limit reached; developed emitter voltage is

within 98% of the 3 V voltage limit

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-7

Details

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

A delay is incorporated into the beta1 subroutine; this delay is the calculated time required for stable

forcing of emitter current with a 3 V voltage limit.

V/I polarities

The polarities of VCB and IE are determined by device type.

Source-measure units (SMUs)

SMU1: Forces VCB, default current limit

SMU2: Forces 0.0 V, measures base current (IB)

SMU3: Forces IE, 3 V voltage limit

Example

result = beta1(e, b, c, sub, ie, vcb, type);

Schematic

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-8 S500-901-01 Rev. B / January 2019

beta2

This subroutine calculates beta () and base-emitter voltage (VBE) at a specified collector current (IC) and

collector-emitter bias (VCE).

Usage

double beta2(int e, int b, int c, int sub, double ice, double vce, double *vbeout, double

*icout, char type);

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

ice Input The targeted collector current, in amperes

vce Input The forced collector-emitter voltage, in volts

type Input Type of transistor: 'N' or 'P'

vbeout Output The measured base voltage

icout Output The measured collector current

Returns Output The calculated beta:

 -1.0 = TYPE not 'N' or 'P'

 -2.0 = SMU2 overload

 -3.0 = Divide by 0, or < 0.01

 -4.0 = > 10 K

 -5.0 = Too many iterations

 -6.0 = Emitter voltage limit reached; developed emitter voltage is

within 98% of the 3 V voltage limit

Details

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

A delay is incorporated into the beta2 subroutine; this delay is the calculated time required for stable

forcing of emitter current with a 3 V voltage limit.

A faster and simpler subroutine to use is beta2a (on page 3-9).

V/I polarities

The polarities of VCE and IE are determined by device type.

Source-measure units (SMUs)

SMU1: Forces IE, 3 V voltage limit

SMU2: Forces VCE, maximum current limit, measures ICE

SMU3: Forces 0.0 V, measures base current (IB)

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-9

Example

result = beta2 (e, b, c, sub, ice, vce, &vbeout, &icout, type);

Schematic

beta2a

This subroutine calculates beta () at collector-base voltage (VCB) and collector-emitter current (ICE) using the

searchi and trig LPTLib functions to search emitter current (IE) until the target ICE is reached. The device is in

the common-base configuration.

Usage

double beta2a(int e, int b, int c, int sub, double ice, double vcb, double ie1, double

ie2, double vsub, double *icmeas, double *ieout, double *error);

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

ice Input The targeted collector current, in amperes

vcb Input The forced c to b bias, in volts

ie1 Input The start of the emitter current search, in amperes

ie2 Input The end of the emitter current search, in amperes

vsub Input The forced substrate bias, in volts

icmeas Output The final measured collector-emitter current

ieout Output The final forced value of emitter current

error Output The percent error between the target collector current (ICE) and the final
measured collector current (ICMEAS)

Returns Output The calculated beta:

-1.0 = Target ICE = 0.0

-2.0 = Collector current limit reached

-3.0 = Emitter voltage limit reached

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-10 S500-901-01 Rev. B / January 2019

Details

This subroutine is a revised version of the beta2 (on page 3-8) subroutine that uses the LPTLib

searchi and trig functions to search IE until the target ICE is reached.

This subroutine sets the current trigger on SMU1 at the specified ICE. The emitter current is searched

until the trigger is set. The emitter current is then forced, the collector current measured, and is
calculated.

The percent error (error) is calculated between the target ICE and the final measured ICE and

returned.

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VSUB is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

This subroutine is not supported in dual-site mode (S535 systems).

V/I polarities

NPN +ICE, +VCB, IE, -VSUB

PNP -ICE, -VCB, +IE, -VSUB

Source-measure units (SMUs)

SMU1: Forces VCB, maximum current limit, triggers on ICE

SMU2: Forces 0.0 V, measures IBE

SMU3: Searches IE, 3 V voltage limit

SMU4: Forces VSUB, default current limit

Example

result = beta2a(e, b, c, sub, ice, vcb, ie1, ie2, vsub, &icmeas, &ieout, &error);

Schematic

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-11

beta3a

This subroutine calculates beta () at collector-emitter voltage (VCE) and collector-emitter current (ICE) using the

searchi and trig LPTLib functions to search base-emitter current (IBE) until the target ICE is reached. The

device is in the common-emitter configuration.

Usage

double beta3a(int e, int b, int c, int sub, double ice, double vce, double ibe1, double

ibe2, double vsub, double *ibe, double *cmeas, double *error);

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

ice Input The targeted collector current, in amperes

vce Input The forced collector-emitter voltage, in volts

ibe1 Input The start of the base-emitter current (IBE) search, in amperes

ibe2 Input The end of the base-emitter current (IBE) search, in amperes

vsub Input The forced substrate bias, in volts

ibe Output The final measured emitter-base current

icmeas Output The final measured collector-emitter current

error Output The percent error between the target collector current (ICE) and the final
measured collector current (ICMEAS)

Returns Output The calculated beta:

-1.0 = Target ICE = 0.0

-2.0 = Base voltage limit reached

Details

This subroutine sets the current trigger on SMU1 at the specified ICE. The base current is searched

until the trigger is set. The base current is then forced, the collector current measured, and is
calculated.

The percent error (error) is calculated between the target ICE and the final measured ICE and

returned.

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VSUB is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

This subroutine is not supported in dual-site mode (S535 systems).

V/I polarities

NPN +ICE, +VCE, +IBE, -VSUB

PNP -ICE, -VCE, -IBE, -VSUB

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-12 S500-901-01 Rev. B / January 2019

Source-measure units (SMUs)

SMU1: Forces VCE, maximum current limit, triggers on ICE

SMU2: Searches IBE, 3 V voltage limit

SMU3: Forces VSUB, default current limit

Example

result = beta3a(e, b, c, sub, ice, vce, ibe1, ibe2, vsub, &ibe, &cmeas, &error);

Schematic

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-13

bice

This subroutine sweeps the emitter-base voltage (VBE), measures the resulting collector-emitter current (ICE), and

calculates beta () at each value of VBE for a bipolar transistor. The device is connected in the common-emitter

configuration.

Usage

void bice(int e, int b, int c, int sub, double vce, double vbe1, double vbe2, double

vsub, int npts, double ice_last, double *beta_last, double *beta_max, double

*ic_max);

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

vce Input The forced collector-emitter voltage, in volts

vbe1 Input The start point of the VBE sweep, in volts

vbe2 Input The end point of the VBE sweep, in volts

vsub Input Substrate bias, in volts

npts Input The number of points in the sweep

ice_last Output The measured ICE array

beta_last Output The calculated beta array

beta_max Output The maximum beta in the array

ic_max Output The ICE at maximum beta

Details

The collector-emitter voltage (VCE) and the substrate voltage (VSUB) are held constant.

In addition to the and ICE return arrays, the maximum (beta_max) and collector current at

maximum (ic_max) are returned.

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VSUB is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

V/I polarities

NPNs +VCE, +IBE, and -VSUB

PNPs -VCE, -IBE, and -VSUB

Source-measure units (SMUs)

SMU1: Forces VCE, maximum current limit, measures ICE

SMU2: Sweeps VBE, maximum current limit, measures IBE

SMU3: Forces VSUB, default current limit

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-14 S500-901-01 Rev. B / January 2019

Example

result = bice(e, b, c, sub, vce, vbe1, vbe2, vsub, npts, ice_last, &beta_last,

 &beta_max, &ic_max);

Schematic

bkdn

This subroutine forces a current and measures breakdown voltage on a two-terminal device.

Usage

double bkdn(int hi, int lo, int sub, double ipgm, double vlim);

hi Input The high pin of the device

lo Input The low pin of the device

sub Input The substrate pin of the device

ipgm Input The forced current, in amperes

vlim Input The voltage limit, in volts

Returns Output The measured breakdown voltage:

+2.0E + 21 = Measured voltage is within 98% of the specified voltage

limit

Details

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

A delay is incorporated into the bkdn subroutine; this delay is the calculated time required for stable

forcing of ipgm within the vlim voltage limit.

Source-measure units (SMUs)

SMU1: Forces ipgm, programmable voltage limit, measures breakdown voltage

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-15

Example

result = bkdn(hi, lo, sub, ipgm, vlim);

Schematic

bvcbo

This subroutine forces a collector current (ICBO) and measures the collector-base breakdown voltage (VCB) with the

emitter open.

Usage

double bvcbo(int e, int b, int c, int sub, double ipgm, double vlim, char type);

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

ipgm Input The forced collector-base current (ICB), in amperes

vlim Input The collector voltage limit, in volts

type Input Type of transistor: 'N' or 'P'

Returns Output Collector-base voltage:

 -1.0 = TYPE not 'N' or 'P'

 +2.0E + 21 = Voltage limit reached; measured voltage is within

98% of the specified voltage limit (vlim)

Details

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

A delay is incorporated into the bvcbo subroutine; this delay is the calculated time required for stable

forcing of ipgm within the vlim voltage limit.

V/I polarities

The polarity of ipgm is determined by the device type.

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-16 S500-901-01 Rev. B / January 2019

Source-measure units (SMUs)

SMU1: Forces ICBO, programmed voltage limit, measures bvcbo

Example

result = bvcbo(e, b, c, sub, ipgm, vlim, type);

Schematic

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-17

bvcbo1

This subroutine uses the bsweepv LPTLib function to measure collector-base breakdown voltage at a specified

current with the emitter open.

Usage

double bvcbo1(int e, int b, int c, int sub, double vcbmin, double vcbmax, int nstep,

double ipgm, double udelay, char type);

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

vcbmin Input The starting collector-base voltage (VCB), in volts

vcbmax Input The ending VCB, in volts

nstep Input The number of voltage steps

ipgm Input The targeted collector-base current (ICB), in amperes

udelay Input Delay between VCB steps, in seconds

type Input Type of transistor: 'N' or 'P'

Returns Output Collector-base voltage:

 -1.0 = TYPE not 'N' or 'P'

 +1.0E + 21 = Device triggered on vcbmin

 +2.0E + 21 = Device triggered on vcbmax

Details

This subroutine sweeps the collector-base voltage from vcbstart to vcbstop while monitoring the

collector current with the emitter open. When the programmed current level (ipgm) is reached, the

last collector-base voltage increment is returned as BVCBO1.

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

The udelay parameter should be programmed to approximate c * vcbmax / ipgm, where c =

junction capacitance of the device under test.

V/I polarities

The polarities of vcbmin, vcbmax, and ipgm are determined by device type.

Source-measure units (SMUs)

SMU1: Forces VCB, programmed current limit = 1.25 * ipgm, measures collector current (ICBO)

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-18 S500-901-01 Rev. B / January 2019

Example

Result = bvcbo1(e, b, c, sub, vcbmin, vcbmax, nstep, ipgm, udelay, type);

Schematic

bvceo

This subroutine measures the collector-emitter breakdown voltage (VCE) when the collector current (IC) is forced

with the base terminal left open.

Usage

double bvceo(int e, int b, int c, int sub, double ipgm, double vlim, char type);

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

ipgm Input The forced collector-emitter current (ICE), in amperes

vlim Input The collector voltage limit, in volts

type Input Type of transistor: 'N' or 'P'

Returns Output Collector-emitter voltage:

 -1.0 = TYPE not 'N' or 'P'

 +2.0E + 21 = Voltage limit reached; measured voltage is within

98% of the specified voltage limit (vlim)

Details

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

A delay is incorporated into the bvceo subroutine; this delay is the calculated time required for stable

forcing of ipgm within the vlim voltage limit.

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-19

V/I polarities

The polarity of ipgm is determined by the device type.

Source-measure units (SMUs)

SMU1: Forces ICEO, programmed voltage limit, measures bvceo

Example

result = bvceo(e, b, c, sub, ipgm, vlim, type);

Schematic

bvceo2

This subroutine measures collector-emitter breakdown voltage using the bsweepV LPTLib function.

Usage

double bvceo2(int e, int b, int c, int sub, double vcemin, double vcemax, int nstep,

double ipgm, double udelay, char type);

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

vcemin Input The starting collector-emitter voltage (VCE), in volts

vcemax Input The ending VCE, in volts

nstep Input The number of voltage steps

ipgm Input The targeted collector-emitter current (ICE), in amperes

udelay Input The delay between VCE steps, in seconds

type Input Type of transistor: 'N' or 'P'

Returns Output Collector-emitter voltage:

 -1.0 = TYPE not 'N' or 'P'

 +1.0E + 21 = Device triggered on vcemin

 +2.0E + 21 = Device triggered on vcemax

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-20 S500-901-01 Rev. B / January 2019

Details

This subroutine sweeps VCE from vcemin to vcemax while monitoring the collector current with the

base open. When the specified current level (ipgm) is reached, the last collector-emitter voltage

increment is returned as bvceo2.

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

Set the udelay parameter to approximate C * vcemax / ipgm, where C = junction capacitance of

the device under test.

V/I polarities

The polarities of vcemin, vcemax, and ipgm are determined by device type.

Source-measure units (SMUs)

SMU1: Forces VCE, programmed current limit = 1.25 *ipgm, measures ICEO

Example

result = bvceo2(e, b, c, sub, vcemin, vcemax, nstep, ipgm, udelay, type);

Schematic

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-21

bvces

This subroutine measures the collector-emitter/base breakdown voltage by forcing a collector current (ICES).

Usage

double bvces(int e, int b, int c, int sub, double ipgm, double vlim, char type);

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

ipgm Input The forced ICES, in amperes

vlim Input The collector voltage limit, in volts

type Input Type of transistor: 'N' or 'P'

Returns Output Collector-emitter/base voltage:

 -1.0 = TYPE not 'N' or 'P'

 +2.0E + 21 = Voltage limit reached; measured voltage is within

98% of the specified voltage limit (vlim)

Details

This subroutine measures collector-to-emitter breakdown voltage at a specified current with the base
shorted to the emitter.

If a positive substrate pin is specified, the substrate will be grounded. If a positive substrate pin is not
specified, it is left floating.

A delay is incorporated into the bvces subroutine; this delay is the calculated time required for stable

forcing of ipgm within the vlim voltage limit.

V/I polarities

The polarity of ipgm is determined by the device type.

Source-measure units (SMUs)

SMU1: Forces ICES, programmed voltage limit, measures bvces

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-22 S500-901-01 Rev. B / January 2019

Example

resu1t = bvces(e, b, c, sub, ipgm, vlim, type);

Schematic

bvces1

This subroutine measure the collector-emitter breakdown voltage using the bsweepV LPTLib function.

Usage

double bvces1(int e, int b, int c, int sub, double vcemin, double vcemax, int nstep,

double ipgm, double udelay, char type);

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

vcemin Input The starting collector-emitter voltage (VCE), in volts

vcemax Input The ending VCE, in volts

nstep Input The number of voltage steps

ipgm Input The targeted collector-emitter current (ICE), in amperes

udelay Input The delay between VCE steps, in seconds

type Input Type of transistor: 'N' or 'P'

Returns Output Collector-emitter voltage:

 -1.0 = TYPE not 'N' or 'P'

 +1.0E + 21 = Device triggered on vcemin

 +2.0E + 21 = Device triggered on vcemax

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-23

Details

This subroutine sweeps the collector-emitter voltage from vcemin to vcemax while monitoring the

collector current with the base shorted to the emitter. When the programmed current level (ipgm) is

reached, the last collector-emitter voltage increment is returned as bvces1.

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

Set the udelay parameter to approximate C * vcemax / ipgm, where C = junction capacitance of

the device under test.

V/I polarities

The polarities of vcemin, vcemax, and ipgm are determined by device type.

Source-measure units (SMUs)

SMU1: Forces VCE, programmed current limit = 1.25 *ipgm, measures ICEO

Example

result = bvces1(e, b, c, sub, vcemin, vcemax, nstep, ipgm, udelay, type);

Schematic

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-24 S500-901-01 Rev. B / January 2019

bvdss

This subroutine measure drain-source breakdown voltage (VG = 0) when the gate is grounded with the source.

Usage

double bvdss(int d, int g, int s, int sub, double ipgm, double vlim);

d Input The drain pin of the device

g Input The gate pin of the device

s Input The source pin of the device

sub Input The substrate pin of the device

ipgm Input The forced drain current, in amperes

vlim Input The drain voltage limit, in volts

Returns Output Measured breakdown voltage:

 +2.0E + 21 = Voltage limit reached; measured voltage is within

98% of the specified voltage limit (vlim)

Details

This subroutine measures the drain-to-source breakdown voltage of a field-effect transistor (FET) with
the gate grounded with the source, at a specified current (magnitude and polarity).

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

A delay is incorporated into the bvdss subroutine; this delay is the calculated time required for stable

forcing of ipgm within the vlim voltage limit.

V/I polarities

N-channel +Ipgm

P-channel -Ipgm

Source-measure units (SMUs)

SMU1: Forces ipgm, programmed voltage limit, measures bvdss

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-25

Example

result = bvdss(d, g, s, sub, ipgm, vlim);

Schematic

bvdss1

This subroutine measures the drain-source breakdown voltage using the bsweepv LPTLib function.

Usage

double bvdss1 (int d, int g, int s, int sub, double vdsmin, double vdsmax, int nstep,

double ipgm, double udelay, char type);

d Input The drain pin of the device

g Input The gate pin of the device

s Input The source pin of the device

sub Input The substrate pin of the device

vdsmin Input The starting drain-source voltage (VDS), in volts

vdsmax Input The ending VDS, in volts

nstep Input The number of voltage steps

ipgm Input Target drain-source current (VCS), in amperes

udelay Input The delay between VDS steps, in seconds

type Input Type of transistor: 'N' or 'P'

Returns Output Measured breakdown voltage:

 -1.0 = TYPE not 'N' or 'P'

 +1.0E+21 = Device triggered on vdsmin

 +2.0E+21 = Device triggered on vdsmax

Details

This subroutine sweeps the drain-source voltage from vdsmin to vdsmax while monitoring the drain

current with the gate grounded to the source. When the specified current level (ipgm) is reached, the

last drain-source voltage increment is returned as bvdss1.

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-26 S500-901-01 Rev. B / January 2019

Set the udelay parameter to approximate C * vdsmax / ipgm, where C = junction capacitance of

the device under test.

V/I polarities

The polarities of vdsmin, vdsmax, and ipgm are determined by device type.

Source-measure units (SMUs)

SMU1: Forces VDS, programmed current limit = 1.25*ipgm, measures IDS

Example

result = bvdss1(d, g, s, sub, vdsmin, vdsmax, nstep, ipgm, udelay, type);

Schematic

S

bvebo

This subroutine measures emitter-base breakdown voltage at a specified current with the collector open.

Usage

double bvebo(int e, int b, int c, int sub, double ipgm, double vlim, char type);

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

ipgm Input The forced emitter-base current (IEB), in amperes

vlim Input The emitter voltage limit, in volts

type Input Type of transistor: 'N' or 'P'

Returns Output Emitter-base voltage:

 -1.0 = TYPE not 'N' or 'P'

 +2.0E + 21 = Voltage limit reached; measured voltage is within

98% of the specified voltage limit (vlim)

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-27

Details

This subroutine measures the emitter-base breakdown voltage by forcing an emitter current with the

collector pin open. Always call this subroutine last when testing transistors.

At high values of IEBO, degradation of the emitter-base junction can occur, which will lower beta ().

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not

specified, the substrate is left floating.

A delay is incorporated into the bvebo subroutine; this delay is the calculated time required for stable

forcing of ipgm within the vlim voltage limit.

V/I polarities

The polarity of ipgm is determined by the device type.

Source-measure units (SMUs)

SMU1: Forces IEBO, programmed voltage limit, measures bvebo

Example

result = bvebo(e, b, c, sub, ipgm, vlim, type);

Schematic

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-28 S500-901-01 Rev. B / January 2019

cap

This subroutine measures the capacitance of a two-terminal device.

Usage

double cap(int hi, int lo, int sub, double vbias);

hi Input The high pin of the device

lo Input The low pin of the device

sub Input The substrate pin of the device

vbias Input The voltage bias on the device, in volts

Returns Output Measured capacitance

Details

This subroutine measures the capacitance of a two-terminal capacitor at a specified voltage. The
voltage is provided by the internal capacitance meter bias supply. The result is returned in farads.

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

When using this routine for junction capacitance measurements, make sure the junction never
becomes forward biased. To prevent this, make sure the forward voltage is less than one-half the
barrier potential (for silicon, this means that the forward voltage (VF) should not exceed 300 mV to
350 mV).

At the onset of conduction in a forward-biased diode (V > 300 mV), the current flow causes

unpredictable readings in the capacitance meter (usually overrange, 1022).

Example

result = cap(hi, lo, sub, vbias);

Schematic

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-29

deltl1

This subroutine estimates MOSFET gate length reduction (L) using transconductance (gm) data obtained from

the vtext2 subroutine for two different transistors.

Usage

double deltl1(int d1, int g1, int s1, int sub1, double l1, int d2, int g2, int s2, int

sub2, double l2, double vlow, double vhigh, double vds, double vbs, double ithr,

double vstep, int npts, int *kflag)

d1 Input The drain pin of the first transistor

g1 Input The gate pin of the first transistor

s1 Input The source pin of the first transistor

sub1 Input The substrate pin of the first transistor

l1 Input Drawn gate length of the first transistor, in microns

d2 Input The drain pin of the second transistor

g2 Input The gate pin of the second transistor

s2 Input The source pin of the second transistor

sub2 Input The substrate pin of the second transistor

l2 Input Drawn gate length of the second transistor, in microns

vlow Input Start of the gate-source voltage (VGS) search, in volts

vhigh Input End of the VGS search, in volts

vds Input Drain bias, in volts

vbs Input Substrate bias, in volts

ithr Input Drain-source trigger current (IDS), in amperes

vstep Input VGS step size, in volts

npts Input Number of points in the VGS sweep

kflag Output Returned status flag:

 0 = Normal completion

 1 = First gm measurement failed

 2 = Second gm measurement failed

Returns Output Estimated gate length reduction

Details

The npts parameter must be greater than 5. If a value less than 5 is used, the subroutine uses 5

points by default.

The equation used for this calculation is:

L = ((Slope1 / Slope2) (L1 - L2) / (Slope1 /Slope2 - 1.0)

Use this subroutine to infer the variability in the channel length based on the transconductance
comparison of two devices, where the reference device is considerably larger than the second device.

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-30 S500-901-01 Rev. B / January 2019

Source-measure units (SMUs)

See the vtext2 (on page 3-85) subroutine.

Example

Result = deltl1(d1, g1, s1, sub1, l1, d2, g2, s2, sub2, l2, vlow, vhigh, vds,

 vbs, ithr, vstep, npts, &kflag)

deltw1

This subroutine estimates the gate width reduction parameter (W) for a MOSFET using two values of threshold

voltage (VT) obtained from the vtext2 subroutine.

Usage

double deltw1(int d1, int g1, int s1, int sub1, double w1, int d2, int g2, int s2, int

sub2, double w2, double vlow, double vhigh, double vds, double vbs, double ithr,

double vstep, int npts, int *kflag)

d1 Input The drain pin of the first transistor

g1 Input The gate pin of the first transistor

s1 Input The source pin of the first transistor

sub1 Input The substrate pin of the first transistor

w1 Input The drawn gate width of the first transistor, in microns

d2 Input The drain pin of the second transistor

g2 Input The gate pin of the second transistor

s2 Input The source pin of the second transistor

sub2 Input The substrate pin of the second transistor

w2 Input The drawn gate width of the second transistor, in microns

vlow Input Start of the gate-source voltage (VGS) search, in volts

vhigh Input End of the VGS search, in volts

vds Input Drain bias, in volts

vbs Input Substrate bias, in volts

ithr Input Drain-source trigger current (IDS), in amperes

vstep Input VGS step size, in volts

npts Input Number of points in the VGS sweep

kflag Output Returned status flag:

 0 = Normal completion

 1 = First VT measurement failed

 2 = Second VT measurement failed

Returns Output Estimated gate width reduction

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-31

Details

W is calculated using the following equation:

L = ((Slope2 / Slope1) W1 - W2) / (Slope2 /Slope1 - 1.0)

The npts parameter must be greater than 5. If a value less than 5 is used, the subroutine uses 5

points by default.

Source-measure units (SMUs)

See the vtext2 (on page 3-85) subroutine.

Example

result = deltw1(d1, g1, s1, sub1, w1, d2, g2, s2, sub2, w2, vlow, vhigh, vds,

 vbs, ithr, vstep, npts, &kflag)

ev

This subroutine calculates the early voltage at constant base-emitter current (IBE).

Usage

void ev(int e, int b, int c, int sub, double ibe, double vstart, double vstop, int npts,

double vsub, double *slope, double *iflag, double *r, double *early);

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

ibe Input Forced base current, in amperes

vstart Input The start of the collector-emitter voltage (VCE) sweep

vstop Input The end of the VCE sweep

npts Input The number of points in the sweep

vsub Input Substrate bias, in volts

slope Output The calculated inductance

iflag Output Status flag:

 0 = Normal completion

 1 = No valid data for fit

 2 = Calculated slope = 0.0

 3 = Developed base voltage is within 98% of the 3 V voltage limit

r Output Correlation coefficient

early Output Calculated early voltage

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-32 S500-901-01 Rev. B / January 2019

Details

This subroutine estimates the forward early voltage of a bipolar device at constant IBE. The device is
connected in the common-emitter configuration, and a collector-emitter voltage (VCE) and
collector-emitter current (ICE) data set is generated. A linear least squares (LLSQ) line is fit to the
data, and the X-intercept is returned as the forward early voltage. The correlation coefficient is
returned as an estimate of the fit.

When calling this routine, make sure the VCE start and stop values have the device well into
saturation.

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VSUB is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

V/I polarities

NPN +VCE, +IBE and -VSUB

PNP -VCE, -IBE and -VSUB

Source-measure units (SMUs)

SMU1: Sweeps VCE, default current limit, measures ICE

SMU2: Forces ibe, 3 V voltage limit

SMU3: Forces vsub, default current limit

Example

ev(e, b, c, sub, ibe, vstart, vstop, npts, vsub, &slope, &iflag, &r, &early);

Schematic

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-33

fimv

This subroutine forces a current and measures a voltage on a device with four high (source) pins and four ground

pins. This is an alternate version of the fvmi subroutine.

Usage

double fimv(int h1, int h2, int h3, int h4, int l1, int l2, int l3, int l4, double *v,

double i);

h1 Input High pin 1

h2 Input High pin 2

h3 Input High pin 3

h4 Input High pin 4

l1 Input Low pin 1

l2 Input Low pin 2

l3 Input Low pin 3

l4 Input Low pin 4

v Output Measured voltage

i Input Forced current, in amperes

Returns Output Measured voltage:

0.0 = All high or low pins are <1

Details

Input a -1 if the pin is not to be used.

A delay is incorporated into the fimv subroutine; this delay is the calculated time required for stable

forcing of i with a 30 V voltage limit (default).

Source-measure units (SMUs)

SMU1: Forces current, default voltage limit, measures voltage

Example

result = fimv(h1, h2, h3, h4, l1, l2, l3, l4, &v, i);

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-34 S500-901-01 Rev. B / January 2019

Schematic

Figure 11: Schematic for the fimv subroutine

fnddat

This subroutine searches an array and returns a new array.

Usage

void fnddat(double *x, int npts, double *y, int npts1, double x1, double x2, double *xnew,

int np1, double *ynew, int np2, int *np, char code)

x Input Input x array

npts Input Number of points in the input array

y Input Input y array

npts1 Input Number of points in the input array

x1 Input Minimum valid point

x2 Input Maximum valid point

xnew Output Screened x array

np1 Input Number of points in the output array

ynew Output Screened y array

np2 Input Number of points in the output array

np Output Number of points in the output array

code Input Search "x" or "y" data array

Details

This subroutine searches a data set of x and y values for a specified range of data and returns two
new arrays with the screened data. Use this routine in other routines to remove unwanted or bad
points from measured data.

The x, y, xnew, and ynew parameters are all adjustable dimensioned arrays. The calling routine

should dimension them all the same.

The code parameter searches either the x data or y data. For example, in most measurement

routines, either the voltage or current is fixed, and the other variable is measured. The measured
variable is normally what is screened.

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-35

Example

fnddat(&x, npts, &y, npts1, x1, x2, &xnew, np1, &ynew, np2, &np, code)

fndtrg

This subroutine determines which native mode trigger to use.

Usage

int fndtrg(double low, double high)

low Input The low value

high Input The high value

Returns Output TRUE = Use the Less Than trigger

FALSE = Use the Greater Than trigger

Details

This subroutine compares the algebraic magnitudes of the input parameters and sets its return value

TRUE if TRIGL should be used or FALSE if TRIGH should be used.

Example

result = fndtrg(low, high)

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-36 S500-901-01 Rev. B / January 2019

fvmi

This primitive subroutine forces a voltage and measures a current on a device with four input pins and four ground

pins.

Usage

double fvmi(int h1, int h2, int h3, int h4, int l1, int l2, int l3, int l4, double v,

double *i);

h1 Input High pin 1

h2 Input High pin 2

h3 Input High pin 3

h4 Input High pin 4

l1 Input Low pin 1

l2 Input Low pin 2

l3 Input Low pin 3

l4 Input Low pin 4

v Input Forced voltage, in volts

i Output Measured current

Returns Output Measured current:

 0.0 = All high or low pins are < 1

 +4.0E+21 = Measured voltage is within 98% of the default current
limit

Details

This subroutine is normally used for defect structures with multiple high pins and ground pins.

Source-measure units (SMUs)

SMU1: Forces voltage, default current limit, measures current

Example

result = fvmi(h1, h2, h3, h4, l1, l2, l3, l4, v, &i);

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-37

Schematic

Figure 12: Schematic for the fvmi subroutine

gamma1

This subroutine returns the value of the body effect parameter gamma obtained from two measurements of the

threshold voltage (VT) at different substrate bias voltages (VBS).

Usage

double gamma1(int d, int g, int s, int sub, double vlow, double vhigh, double vds, double

vbs1, double vbs2, double phip, double ithr, double vstep, int npts, int *kflag)

d Input The drain pin of the device

g Input The gate pin of the device

s Input The source pin of the device

sub Input The substrate pin of the device

vlow Input Low limit of the expected threshold

vhigh Input High limit of the expected threshold

vds Input Drain-source voltage, in volts

vbs1 First substrate to source voltage

vbs2 Second substrate to source voltage

phip Surface potential, in volts

ithr Drain-source trigger current (IDS), in amperes

vstep Gate-source voltage (VGS) step size, in volts

npts The number of points in the sweep

kflag Output Returned status flag:

 0 = Normal completion

 1 = First VT measurement failed

 2 = second VT measurement failed

Returns Output Estimated body effect

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-38 S500-901-01 Rev. B / January 2019

Details

This subroutine estimates body effect from VT measured at two VBS values. The body effect
parameter characterizes the effect of the substrate bias on threshold voltage. The VT data is obtained

using the vtext2 subroutine.

The equation used in this subroutine:

 = VT2-VT1/ VT1 + p- VT2+ p)

Where:

 = MOSFET body effect constant

VT1 = Threshold voltage at the first value of VBS

VT2 = Threshold voltage at the second value of VBS

p = Surface potential (twice the Fermi level)

The npts parameter must be greater than 5. If a value less than 5 is used, the subroutine uses 5

points by default.

Source-measure units (SMUs)

See the vtext2 (on page 3-85) subroutine.

Example

result = gamma1(d, g, s, sub, vlow, vhigh, vds, vbs1, vbs2, phip, ithr, vstep,

 npts, &kflag)

Schematic

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-39

gd

This subroutine calculates the drain conductance of a MOSFET.

Usage

double gd(int d, int g, int s, int sub, double vds, double vgs, double vbs, double *ids)

d Input The drain pin of the device

g Input The gate pin of the device

s Input The source pin of the device

sub Input The substrate pin of the device

vds Input Drain-source voltage, in volts

vgs Input Gate voltage, in volts

vbs Input Substrate bias, in volts

ids Output The measured drain current

Returns Output The measured drain conductance

Details

This subroutine calculates the drain conductance (gD) at drain-source voltage (VDS), gate-source
voltage (VGS), and substrate bias voltage (VBS) for a MOSFET.

The drain conductance is calculated by:

gD = IDS / VDS

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VBS is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

Source-measure units (SMUs)

SMU1: Forces vds, default current limit, measures ids

SMU2: Forces vgs, default current limit

SMU3: Forces vbs, default current limit

Example

result = gd(d, g, s, sub, vds, vgs, vbs, &ids)

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-40 S500-901-01 Rev. B / January 2019

Schematic

gm

This subroutine estimates transconductance of a metal-semiconductor field-effect transistor (MESFET) at a

specified drain voltage (VDS) and gate voltage (VGS).

Usage

double gm(int d, int g, int s, int sub, double vds, double idlim, double vgs, double

vgstep, double iglim, int *iflag)

d Input The drain pin of the device

g Input The gate pin of the device

s Input The source pin of the device

sub Input The substrate pin of the device

vds Input Drain voltage, in volts

idlim Input Drain current limit, in amperes

vgs Input Gate voltage, in volts

vgstep Input VGS step size, in volts

iglim Input Gate current limit, in amperes

iflag Output Return status flag:

 0 = Normal completion

 1 = Not enough valid data for LLSQ

 2 = Current limit reached (98% of iglim or idlim)

Returns Output Estimated MESFET transconductance

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-41

Details

This subroutine estimates the transconductance of a MESFET at a specified VDS and VGS. A drain
voltage is forced, and then five VGS to IDS (drain-source current) data points are taken around the

specified VGS (the VGS step size is defined by the input parameter vgstep). Then a linear least

squares (LLSQ) line is fit through the data and the transconductance is estimated from the slope of
the line.

V/I polarities

N-channel +VDS, +VGS

P channel -VDS, - VGS

Source-measure units (SMUs)

SMU1: Forces vds, programmable current limit, measures IDS

SMU2: Sweeps vgs, programmable current limit

Example

result = gm(d, g, s, sub, vds, idlim, vgs, vgstep, iglim, &iflag)

Schematic

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-42 S500-901-01 Rev. B / January 2019

ibic1

This subroutine measures collector current (ICE) and base current (IB) and calculates beta () at a fixed collector

voltage (VCE), base voltage (VBE), and substrate bias (VSUB). The device is in the common-emitter configuration.

Usage

void ibic1(int e, int b, int c, int sub, double vce, double vbe, double vsub, double

*ibe, double *ice, double *beta)

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

vce Input Forced collector voltage, in volts

vbe Input Forced base voltage, in volts

vsub Input The forced substrate bias, in volts

ibe Output Measured base current:

 4.0E+21 = Current limit reached; measured current is within 98%

of the 200 mA limit. is returned as 0.0

ice Output Measured collector current:

 4.0E+21 = Current limit reached; measured current is within 98%

of the 200 mA limit. is returned as 0.0

beta Output Current gain, collector current (IC) / base current (IB)

Details

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VSUB is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

V/I polarities

NPN +VBE, +VCE, and -VSUB

PNP -VBE, -VCE, and -VSUB

Source-measure units (SMUs)

SMU1: Forces vce, maximum current limit, measures ice

SMU2: Forces vbe, maximum current limit, measures ibe

SMU3: Forces vsub, default current limit

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-43

Example

ibic1(e, b, c, sub, vce, vbe, vsub, &ibe, &ice, &beta)

Schematic

icbo

This subroutine measures leakage when the collector-base junction is reverse-biased (common base).

Usage

double icbo(int e, int b, int c, int sub, double vcbo, double vsub)

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

vcbo Input Forced collector-base voltage, in volts

vsub Input The forced substrate bias, in volts

Returns Output The measured collector-base current

Details

This subroutine measures the collector-base leakage current at a specified collector-base voltage
(VCB) and substrate bias (VSUB) for a bipolar transistor. The emitter pin is not connected (floating), and
the base is grounded.

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VSUB is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

V/I polarities

NPN +VCB, -VSUB

PNP -VCB, -VSUB

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-44 S500-901-01 Rev. B / January 2019

Source-measure units (SMUs)

SMU1: Forces VCB, default current limit, measures icbo

SMU2: Forces vsub, default current limit

Example

result = icbo(e, b, c, sub, vcbo, vsub)

Schematic

iceo

This subroutine measures collector-emitter leakage at collector voltage (VCE) and substrate bias (VSUB).

Usage

double iceo(int e, int b, int c, int sub, double vce, double vsub)

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

vce Input The forced collector-emitter voltage, in volts

vsub Input The forced substrate bias, in volts

Returns Output The measured leakage current

Details

This subroutine forces a VCE and VSUB and measures the leakage current. The base terminal is open
and the emitter is grounded.

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VSUB is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-45

Source-measure units (SMUs)

SMU1: Forces vce, default current limit, measures iceo

SMU2: Forces vsub, default current limit

Example

result = iceo(e, b, c, sub, vce, vsub)

Schematic

ices

This subroutine measures collector-emitter/base leakage when the collector-base junction is reverse-biased

(common base).

Usage

double ices(int e, int b, int c, int sub, double vces, double vsub)

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

vces Input The forced collector-emitter voltage, in volts

vsub Input Substrate bias, in volts

Returns Output The measured collector-emitter/base leakage current

Details

This subroutine measures the collector-emitter/base leakage at a specified collector-emitter voltage
(VCES) and substrate bias (VSUB). The base and emitter terminals are shorted to ground.

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VSUB is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-46 S500-901-01 Rev. B / January 2019

V/I polarities

NPN +VCES, -VSUB

PNP -VCES, -VSUB

Source-measure units (SMUs)

SMU1: Forces vces, default current limit, measures ices

SMU2: Forces vsub, default current limit

Example

result = ices(e, b, c, sub, vces, vsub)

Schematic

id1

This subroutine measures drain current (IDS) at a specified gate-source voltage (VGS), drain-source voltage (VDS),

and substrate-source voltage (VBS).

Usage

double id1(int d, int g, int s, int sub, double vgs, double vds, double vbs)

d Input The drain pin of the device

g Input The gate pin of the device

s Input The source pin of the device

sub Input The substrate pin of the device

vgs Input The forced gate voltage, in volts

vds Input Drain voltage, in volts

vbs Input Substrate bias, in volts

Returns Output The measured drain current

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-47

Details

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VBS is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

V/I polarities

N-channel +VDS, +VGS, -VBS

P-channel -VDS, -VGS, +VBS

Source-measure units (SMUs)

SMU1: Forces vds, default current limit, measures IDS

SMU2: Forces vgs, default current limit

SMU3: Forces vbs, default current limit

Example

result = id1(d, g, s, sub, vgs, vds, vbs)

Schematic

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-48 S500-901-01 Rev. B / January 2019

idsat

This subroutine measures drain-source current (IDS) at a specified drain-source voltage (VDS) and

substrate-source voltage (VBS). The gate is tied to the drain.

Usage

double idsat(int d, int g, int s, int sub, double vds, double vbs)

d Input The drain pin of the device

g Input The gate pin of the device

s Input The source pin of the device

sub Input The substrate pin of the device

vds Input Drain-source voltage, in volts

vbs Input Substrate bias, in volts

Returns Output The measured drain current

Details

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VBS is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

V/I polarities

N-channel +VDS, -VBS

P-channel -VDS, +VBS

Source-measure units (SMUs)

SMU1: Forces vds, default current limit, measures IDS

SMU2: Forces vbs, default current limit

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-49

Example

result = idsat(d, g, s, sub, vds, vbs)

Schematic

idss

This subroutine estimates the saturated drain current (IDSS) and saturation voltage (VDSAT) at forced drain voltage

(VDSS) for a metal-semiconductor field effect transistor (MESFET).

Usage

double idss(int d, int g, int s, int sub, double vdss, double idlim, double f, double

*idsat, double *vdsat)

d Input The drain pin of the device

g Input The gate pin of the device

s Input The source pin of the device

sub Input The substrate pin of the device

vdss Input The forced drain voltage, in volts

idlim Input Drain current limit, in amperes

f Input Fraction of IDSS

idsat Output Target saturation current

vdsat Output Saturation voltage

Returns Output Measured drain current:

 0.0 = If f 0.0 or > 1.0

 2.0E+21 = If measured vdsat is within 98% of the gate voltage

limit

 4.0E+21 = If idss is within 98% of specified drain current limit

(idlim)

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-50 S500-901-01 Rev. B / January 2019

Details

This subroutine measures the drain current of a field effect transistor (FET) when the gate is shorted
to the source at a specified drain voltage (VDS). It also estimates the VDSAT by measuring IDSS and then
finding the VDS that forces a fraction of IDSS (usually 0.9).

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

The f parameter is normally set to 0.9.

A delay is included in the idss subroutine; this delay is the calculated time required for stable forcing

of drain current with a 30 V voltage limit.

Source-measure units (SMUs)

SMU1: Forces vdss, programmable current limit, measures idss

Example

result = idss(d, g, s, sub, vdss, idlim, f, &idsat, &vdsat)

Schematic

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-51

idvsvd

This subroutine returns an array of drain-source current (IDS) and drain-source voltage (VDS) values for a given VDS

sweep range, where gate to source bias (VGS) and substrate to source voltage (VBS) are held constant.

Usage

void idvsvd(int d, int g, int s, int sub, double vlow, double vhigh, double vgs, double

vbs, int npts, double *id, int idSize, double *vd, int vdSize);

d Input The drain pin of the device

g Input The gate pin of the device

s Input The source pin of the device

sub Input The substrate pin of the device

vlow Input The start of the VDS sweep, in volts

vhigh Input The end the VDS sweep, in volts

vgs Input The gate bias, in volts

vbs Input Substrate bias, in volts

npts Input The number of points in the sweep

id Output The array of measured IDS values

idSize Input The size of the ID array

vd Output The array of forced VDS values

vdSize Input The size of the VD array

Details

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VBS is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

The value of the npts, idSize, and vdSize parameters must be the same.

V/I polarities

N-channel +Vlow, +Vhigh, +VGS, -VBS

P-channel -Vlow, -Vhigh, -VGS, +VBS

Source-measure units (SMUs)

SMU1: Sweeps VDS, maximum current limit, measures IDS

SMU2: Forces vgs, maximum current limit

SMU3: Forces vbs, default current limit

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-52 S500-901-01 Rev. B / January 2019

Example

idvsvd(d, g, s, sub, vlow, vhigh, vgs, vbs, npts, &id, idSize, &vd, vdSize);

Schematic

idvsvg

This subroutine measures drain-source current (IDS) when gate-source voltage (VGS) is swept and drain-source

voltage (VDS) and forced substrate bias voltage (VBS) are held constant.

Usage

void idvsvg(int d, int g, int s, int sub, double vlow, double vhigh, double vds, double

vbs, int npts, double *id, int idSize, double *vg, int vgSize);

d Input The drain pin of the device

g Input The gate pin of the device

s Input The source pin of the device

sub Input The substrate pin of the device

vlow Input The start of the VGS sweep, in volts

vhigh Input The end the VGS sweep, in volts

vds Input The forced drain voltage, in volts

vbs Input Substrate bias, in volts

npts Input The number of points in the sweep

id Output The array of measured IDS values

idSize Input The size of the ID array

vg Output The array of calculated VGS values

vgSize Input The size of the VG array

Details

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VBS is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-53

V/I polarities

N-channel +Vlow, +Vhigh, +VDS, -VBS

P-channel -Vlow, -Vhigh, -VDS, -VBS

Source-measure units (SMUs)

SMU1: Forces vds, maximum current limit, measures IDS

SMU2: Sweeps VGS, maximum current limit

SMU3: Forces vbs, default current limit

Example

idvsvg(d, g, s, sub, vlow, vhigh, vds, vbs, npts, &id, idSize, &vg, vgSize);

Schematic

iebo

This subroutine measures the reverse-bias leakage current through the emitter-base diode of a bipolar transistor

with the base grounded and collector terminal floating.

Usage

double iebo(int e, int b, int c, int sub, double vebo, double vsub)

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

vebo Input Emitter-base voltage, in volts

vsub Input Substrate bias, in volts

Returns Output Reverse-bias leakage current:

 +4.0E+21 = Current limit reached, measured current is within 98%
of the 1 mA limit

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-54 S500-901-01 Rev. B / January 2019

Details

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VSUB is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

V/I polarities

NPN +VEB and -VSUB

PNP -VEB and -VSUB

Source-measure units (SMUs)

SMU1: Forces vebo, 1 mA current limit, measures leakage current

SMU2: Forces vsub, default current limit

Example

result = iebo(e, b, c, sub, vebo, vsub)

Schematic

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-55

isubmx

This subroutine finds peak substrate current at drain-source voltage (VDS) and finds substrate bias voltage (VBS).

Usage

void isubmx(int d, int g, int s, int sub, double vds, double vbs, double vlow, double

vhigh, int npts, double *ismax, double *vgmax)

d Input The drain pin of the device

g Input The gate pin of the device

s Input The source pin of the device

sub Input The substrate pin of the device

vds Input The forced drain voltage, in volts

vbs Input Substrate bias, in volts

vlow Input The start of the gate voltage (VGS) sweep

vhigh Input The end of the VGS sweep

npts Input The number of points in the sweep

ismax Output Peak substrate current:

 -1.0 = Substrate not specified

 +4.0E+21 = Measured drain current (IDS) is within 98% of the
drain current limit (200 mA)

vgmax Output VGS at ismax

Details

This subroutine measures the substrate current when the gate voltage (VGS) is swept with VDS and
VBS held constant. Maximum current measured is returned as the function result. The gate voltage at
maximum current is also returned. In some cases, peak substrate current is referred to as ISX.

A substrate connection is mandatory; the ismax parameter returns -1.0 if the sub parameter is less

than 1.

The typical value for the npts parameter is 10 to 20.

V/I polarities

N-channel +VDS, +Vlow and Vhigh, -VBS

P-channel -VDS, -Vlow and Vhigh, +VBS

Source-measure units (SMUs)

SMU1: Forces vds, maximum current limit

SMU2: Sweeps VGS, default current limit

SMU3: Forces vbs, default current limit, measures ISX

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-56 S500-901-01 Rev. B / January 2019

Example

isubmx(d, g, s, sub, vds, vbs, vlow, vhigh, npts, &ismax, &vgmax)

Schematic

kdelay

This subroutine provides an appropriate delay time based on current and voltage values.

Usage

void kdelay(int npin, double i, double v)

npin Input The number of pins connected to the charging node

i Input The current, in amperes

v Input The voltage, in volts

Details

This subroutine provides an appropriate delay time for a current source to reach a specified voltage
by using an equation that accounts for the system capacitance, leakage currents, and number of pins
to which the source is connected. The linear capacitance charging equation used by this subroutine:

IDELAY = 1 ms + ABS(npin * CDELAY * v) / MAX((ABS(i)-ILEAK), ILEAK) * 1000 ms

Where:

IDELAY = The calculated required delay, in milliseconds

npin = The number of pins connected to the charging node

CDELAY = A constant representing the capacitance of the system

v = The voltage, in volts

i = The current, in amps

ILEAK = The leakage current

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-57

The kdelay subroutine defaults to 1 ms for calculated delays less than 1 ms; it defaults to 30 s for

calculated delays greater than 30 s.

Example

kdelay(npin, i, v)

leak

This subroutine measures leakage current of a two-terminal device (diode) at a specified voltage.

Usage

double leak(int hi, int lo, int sub, double v, double ilim)

hi Input The HI pin of the device (anode)

lo Input The LO pin of the device (cathode)

sub Input The substrate pin of the device

v Input The forced voltage, in volts

ilim Input The current limit, in amperes

Returns Output Measured leakage current:

 +4.0E+21 = Measured current is within 98% of the specified
current limit

Details

This subroutine measures the leakage current by forcing a specified voltage and measuring the
resulting current flow.

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

Source-measure units (SMUs)

SMU1: Forces v, programmable current limit, measures current

Example

result = leak(hi, lo, sub, v, ilim)

Schematic

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-58 S500-901-01 Rev. B / January 2019

logstp

This subroutine creates an array using logarithmic steps.

Usage

int logstp(double xstart, double xstop, double *steps, int npts)

xstart Input The start point of the sweep

xstop Input The end point of the sweep

steps Output The step array

npts Input The number of steps in the sweep

Returns Output The valid range status flag:

 1 = The xstart and xstop parameters are valid

 0 = Limits cross zero or equal 0.0

Details

This subroutine creates an array of logarithmic-based steps from an input range (xstart and xstop)

and the number of steps (npts). The array of values is returned in the steps output parameter.

The logstp subroutine is often used instead of the sweepi native-mode subroutine call. The sweepi

subroutine uses linear-based steps, which should not be used when sweeping current across more
than three decades of current. Many of the bipolar routines that collect beta-ICE type data use the

logstp subroutine to calculate the proper current values to force.

The sweep range cannot cross 0.0.

Negative sweep start and stop points generate an array of negative numbers.

Example

result = logstp(xstart, xstop, &steps, npts)

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-59

rcsat

This subroutine estimates the collector resistance (RC) modeling parameter when collector current (IC) and base

current (IB) are swept at a constant beta ().

Usage

double rcsat(int e, int b, int c, int sub, double ice1, double ice2, double beta, double

vsub, int npts, double *r, int *iflag)

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

ice1 Input The start of the collector-emitter current (ICE) sweep, in amperes

ice2 Input The end of the ICE sweep, in amperes

beta Input The current ratio, IC/IB

vsub Input The forced substrate bias, in volts

npts Input The number of points in the sweep

r Output The correlation coefficient

iflag Output The status flag:

 0 = Normal completion

 1 = Insufficient points for LLSQ analysis

 2 = Calculated LLSQ slope is 0.0

Returns Output The collector resistance modeling parameter

Details

This subroutine estimates the modeling parameter RC in the saturation region of a transistor using
Getreu's method (Ian Getreu, Modeling the Bipolar Transistor, Tektronix, 1976). Current is stepped

into the base and collector at a specified (normally 10). The developed collector-emitter voltage
(VCE) is measured. VCE and ICE data is extracted from the positive slope portion of the curve, and a
linear least-squares (LLSQ) line is fit to the data. The inverse of the slope of this line gives RCSAT. The
device is in the common-emitter configuration.

For high-speed or microwave bipolar devices, best results are obtained by starting at the maximum
current and sweeping the current to a lower value.

An incorrect value of can result in a large excursion of VCE, which may break down the device.
Because of this, the collector voltage is limited to 16 V.

To measure RC SAT correctly, make sure the transistor is saturated. You can do this by entering a

smaller than actual value for (overdriving the base).

Make sure the collector current range selected is not near the bend in the IB-VCE curve (knee region of

the curve). If operated within this region, the rcsat subroutine may return negative or unpredictable

results.

Two delays are incorporated into the rcsat subroutine; these delays calculate the time required for a

stable forcing of base-emitter current (IBE) with a 3 V emitter voltage limit and ICE with a 16 V voltage
limit.

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-60 S500-901-01 Rev. B / January 2019

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VSUB is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

Typical value for the beta parameter is 10.

V/I polarities

NPN +ICE and -VSUB

PNP -ICE and -VSUB

Source-measure units (SMUs)

SMU1: Sweeps ICE, 16 V voltage limit, measures VCESAT

SMU2: Sweeps ICE/ , 3 V voltage limit

SMU3: Forces vsub, default current limit

Example

result = rcsat(e, b, c, sub, ice1, ice2, beta, vsub, npts, &r, &iflag)

Schematic

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-61

re

This subroutine estimates emitter resistance (RE).

Usage

double re(int e, int b, int c, int sub, double ib1, double ib2, double vsub, int npts,

int *iflag, double *r)

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

ib1 Input The start of the base-emitter current (IBE) sweep, in amperes

ib2 Input The end of the IBE sweep, in amperes

vsub Input Substrate bias, in volts

npts Input The number of points in the sweep

iflag Output The status flag:

 0 = Normal completion

 1 = Insufficient points for LLSQ analysis

 2 = Calculated LLSQ slope is 0.0

 3 = Bad range specified in the call to the logstp subroutine

r Output The correlation coefficient

Returns Output The estimated emitter resistance

Details

This subroutine uses Getreu's method (Ian Getreu, Modeling the Bipolar Transistor, Tektronix, 1976)
to estimate the emitter resistance modeling parameter. This routine should be used with caution
because the value returned may include some parasitic values. The technique sweeps base current
and measures the open (floating) developed collector voltage.

The subroutine assumes the device is in saturation. For a device in saturation, with the collector
open, Getreu gives:

VCE=kT/qln (1/ R)+IB RE

Where:

R = Reverse emitter efficiency

kT/q = 25.96 mV at 300 K

IB = The base current

RE = The emitter current

VCE = The collector-emitter voltage

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-62 S500-901-01 Rev. B / January 2019

Plotting IBE versus VCE gives the slope as RE. The sample plot shows the typical VCE - IBE

characteristic. To calculate RE, the VCE - IBE data is analyzed for positive slope data, and a linear
least-squares (LLSQ) line is fit to the extracted data. The emitter resistance is then the inverse of the
calculated slope. The result is returned in ohms.

The IB versus VCE curve has a flyback region where VCE decreases as IB increases (the curve has a

negative slope). The re subroutine drops all points with a negative slope in its calculation of the

emitter resistance. An error code, "IFLAG=1" is generated if there are too few remaining points to

continue the calculation of re.

A delay is incorporated into the re subroutine; this delay is the calculated time required for stable

forcing of IBE with a 30 V voltage limit.

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VSUB is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

V/I polarities

NPN +IBE and -VSUB

PNP -IBE and -VSUB

Source-measure units (SMUs)

SMU1: Set to VMTR, measures VCE

SMU2: Sweeps IBE, 3 V voltage limit

SMU3: Forces vsub, default current limit

Example

result = re(e, b, c, sub, ib1, ib2, vsub, npts, &iflag, &r)

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-63

Schematic

res

This subroutine calculates the resistance of a two-terminal resistor (force I, measure V).

Usage

double res(int hi, int lo, int sub, double itest)

hi Input The HI pin of the device

lo Input The LO pin of the device

sub Input The substrate pin of the device

itest Input The forced current, in amperes

Returns Output The calculated resistance:

 0.0 = if the itest parameter is 0.0

 2.0E+21 = Measured voltage is within 98% of the default voltage
limit

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-64 S500-901-01 Rev. B / January 2019

Details

This subroutine calculates the resistance of a two-terminal resistor by forcing a current and
measuring the voltage. The voltage is limited to 30 V.

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

A delay is incorporated into the res subroutine; this delay is the calculated time required for stable

forcing of itest with a 30 V voltage limit.

Source-measure units (SMUs)

SMU1: Forces itest, 30 V voltage limit, measures voltage

Example

result = res(hi, lo, sub, itest)

Schematic

res2

This subroutine measures two-terminal resistance with a voltage limit.

Usage

double res2(int hi, int lo, int sub, double itest, double vlim)

hi Input The HI pin of the device

lo Input The LO pin of the device

sub Input The substrate pin of the device

itest Input The forced current, in amperes

vlim Input The voltage limit, in volts

Returns Output The calculated resistance:

 0.0 = Measured voltage is < 0.002 V or itest = 0.0

 2.0E+21 = Measured voltage is within 98% of the voltage limit

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-65

Details

This subroutine measures the resistance of a two-terminal resistor by forcing a current and measuring
the voltage.

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

A delay is incorporated into the res2 subroutine; this delay is the calculated time required for stable

forcing of itest with vlim voltage limit.

Source-measure units (SMUs)

SMU1: Forces itest, programmable voltage limit, measures voltage

Example

result = res2(hi, lo, sub, itest, vlim)

Schematic

res4

This subroutine measures the resistance of a four-terminal resistor.

Usage

double res4(int his, int him, int los, int lom, int sub, double itest)

his Input The high source pin of the device

him Input The high measure pin of the device

los Input The low source pin of the device (ground)

lom Input The low measure pin of the device

sub Input The substrate pin of the device

itest Input The forced current, in amperes

Returns Output The calculated resistance:

 0.0 = Measured voltage is < 0.002 V

 2.0E+21 = Measured voltage is within 98% or the 40 V voltage
limit

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-66 S500-901-01 Rev. B / January 2019

Details

This subroutine calculates the resistance of a four-terminal resistor (usually a van der Pauw structure)
by forcing current and measuring the voltage. All device pins must be unique.

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

A delay is incorporated into the res4 subroutine; this delay is the calculated time required for stable

forcing of itest with a 40 V voltage limit.

Source-measure units (SMUs)

SMU1: Forces itest, 40 V voltage limit

SMU2: Set to VMTR, measures voltage

Example

result = res4(his, him, los, lom, sub, itest)

Schematic

resv

This subroutine measures two-terminal resistance (force V, measure I).

Usage

double resv(int hi, int lo, int sub, double v)

hi Input The HI pin of the device

lo Input The LO pin of the device

sub Input The substrate pin of the device

v Input The forced voltage, in volts

Returns Output The calculated resistance:

 1.0E+20 = Measured current is < 10 pA

 4.0E+21 = Measured current is within 98% of the 200 mA current
limit

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-67

Details

This subroutine calculates the resistance of a two-terminal resistor by forcing a specified voltage and
measuring the resulting current.

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

Source-measure units (SMUs)

SMU1: Forces V, maximum current limit, measures I

Example

result = resv(hi, lo, sub, v)

Schematic

rvdp

This subroutine makes a four-terminal van der Pauw measurement.

Usage

double rvdp(int pin1, int pin2, int pin3, int pin4, int sub, double itest, double *ratio)

pin1 Input First pin on the device

pin2 Input Second pin on the device

pin3 Input Third pin on the device

pin4 Input Fourth pin on the device

sub Input The substrate pin of the device

itest Input The forced current, in amperes

ratio Output The ratio of resistances (RS)

Returns Output The estimated sheet resistance:

 0.0 = Measured voltage is < 0.002 V or itest = 0.0

 2.0E+21 = Measured voltage is within 98% of the voltage limit

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-68 S500-901-01 Rev. B / January 2019

Details

This subroutine estimates the sheet resistance of a four-terminal sample using the standard
technique of forcing current through two adjacent pins and measuring the voltage developed across
the two remaining pins. The device connections are then shifted 90 degrees and the measurements
are repeated.

The sheet resistance is calculated as the average of the two resistances. The difference between the

two orientations is returned in the ratio variable. See the schematic for the correct pin orientation on

the sample.

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

A delay is incorporated into the rvdp subroutine; this delay is the calculated time required for a stable

forcing of itest with a 30 V voltage limit.

Source-measure units (SMUs)

SMU1: Forces itest, default voltage limit

SMU2: Set to VMTR, measures voltage

Example

result = rvdp(pin1, pin2, pin3, pin4, sub, itest, &ratio)

Schematic

tdelay

This subroutine calculates the delay time, in seconds, for the number of pins, current, and voltage specified as

input parameters.

Usage

double tdelay(int npin, double i, double v)

npin Input The number of pins connected to the charging node

i Input The current, in amperes

v Input The voltage, in volts

Returns Output The calculated delay time

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-69

Details

This subroutine calculates the delay based on system capacitance, leakage currents, and the number
of pins connected to the source.

The tdelay subroutine differs from the kdelay subroutine because kdelay calculates and provides

a delay, but tdelay simply returns a value that can be passed into LPTLib calls such as sweepX and

searchX to provide an appropriate delay. See the discussion in the kdelay (on page 3-56) subroutine

for more information.

Example

delay_time = tdelay(npin, i, v)

tox

This subroutine calculates the thickness of an oxide layer from the capacitance and the area of a metal-oxide

semiconductor (MOS) capacitor.

Usage

double tox(int hi, int lo, int sub, double vbias, double area)

hi Input The HI pin of the device

lo Input The LO pin of the device

sub Input The substrate pin of the device

vbias Input The voltage bias on the device, in volts

area Input The area of the capacitor, in cm2

Returns Output The calculated oxide thickness:

4.0E+21 = Preliminary leakage test fails

Details

This subroutine makes a capacitance and a conductance measurement, corrects the capacitance
measurement, and then calculates the oxide thickness. The common equation below is used to
estimate oxide thickness. The oxide thickness is returned in angstroms. The area should be specified
in cm2.

TOX= OXA / CCORRECTED

Where:

OX = 34.52-14
 farads per cm and is the oxide dielectric constant

Calculations assume that CMTR1 is a Keithley Instruments Model 9125 1 MHz capacitance meter.

Before TOX is calculated, voltage bias (VBIAS) is forced with a current limit of 1 μA, and the resulting

current is measured. If the current is within 98% of the limit, the capacitor is considered too leaky and

the function returns a value of 4.0E+21.

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-70 S500-901-01 Rev. B / January 2019

This subroutine can be modified to accommodate other dielectric materials by adding the dielectric

constant into the argument list.

Example

result = tox(hi, lo, sub, vbias, area)

vbes

This subroutine measures base-emitter voltage of a bipolar transistor.

Usage

double vbes(int e, int b, int c, int sub, double ipgm, char type)

e Input The emitter pin of the device

b Input The base pin of the device

c Input The collector pin of the device

sub Input The substrate pin of the device

ipgm Input The forced current, in amperes

type Input Type of transistor: 'N' or 'P'

Returns Output -1.0 = Type not specified as 'N' or 'P'

+2.0E+21 = Voltage limit reached; measured voltage is within 98% of the
3 V limit

Details

For a PNP transistor, this subroutine measures the base-emitter voltage at a specified emitter current
with the base and collector terminals tied to ground.

For an NPN transistor, this subroutine measures the emitter-base voltage at a specified base current
with the emitter and collector terminals tied to ground.

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

A delay is incorporated into the vbes subroutine; this delay is calculated time required for stable

forcing of ipgm with a 3 V voltage limit.

V/I polarities

The polarity of ipgm is determined by device type.

Source-measure units (SMUs)

SMU1: Forces ipgm, 3 V voltage limit, measures vbes

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-71

Example

result = vbes(e, b, c, sub, ipgm, type)

Schematic

vf

This subroutine measures the forward-biased junction voltage of a diode when a current is forced.

Usage

double vf(int hi, int lo, int sub, double itest)

hi Input The HI pin of the device (anode)

lo Input The LO pin of the device (cathode)

sub Input The substrate pin of the device

itest Input The forced current, in amperes

Returns Output Measured voltage:

+2.0E+21 = Measured voltage is within 98% of the 3 V voltage limit

Details

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

A delay is incorporated into the vf subroutine; this delay is the calculated time required for stable

forcing of itest with a 3 V voltage limit.

Source-measure units (SMUs)

SMU1: Forces itest, 3 V voltage limit, measures voltage

Example

result = vf(hi, lo, sub, itest)

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-72 S500-901-01 Rev. B / January 2019

Schematic

vg2

This subroutine measures gate-source voltage (VGS) at a specified drain current (IDS), drain voltage (VDS), and

substrate bias (VBS).

Usage

double vg2(int d, int g, int s, int sub, char type, double idspec, double errpct, double

vds, double vbs, double vglo, double vghi, int maxitr, double *idmeas, int *istat)

d Input The drain pin of the device

g Input The gate pin of the device

s Input The source pin of the device

sub Input The substrate pin of the device

type Input Type of transistor: 'N' or 'P'

idspec Input Target value of IDS, in amperes

errpct Input Maximum percent error in drain current

vds Input The forced drain voltage, in volts

vbs Input The forced substrate bias, in volts

vglo Input Start of the gate-source voltage (VGS) search, in volts

vghi Input End of the VGS search, in volts

maxitr Input Maximum number of iterations

idmeas Output Final measured IDS, in amperes

istat Output Return status code:

 > 0 = Success, istat is the number of iterations

 -1 = type not 'N' or 'P'

 -2 = vglo is vghi

 -3 = Maximum iteration count reached

 -4 = IDS window too small

 -5 = maxitr < 0

Returns Output Measured gate-source voltage, or 0.0 if istat is < 0

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-73

Details

Drain voltage is forced and a binary search is done on VGS, starting with the two input values of VGS

(vglo and vghi). The binary search is controlled by two parameters: The error estimate (errpct)

and the maximum number of iterations (maxitr). Error codes are returned based on the results of

the search.

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VBS is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

V/I polarities

The polarities of VGS, VDS, and VBS are determined by device type.

Source-measure units (SMUs)

SMU1: Forces vds, default current limit, measures IDS

SMU2: Searches VGS, current limit set to (1.25 * idspec)

SMU3: Forces vbs, default current limit

Example

result = vg2(d, g, s, sub, type, idspec, errpct, vds, vbs, vglo, vghi, maxitr,

 &idmeas, &istat)

Schematic

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-74 S500-901-01 Rev. B / January 2019

vgsat

This subroutine measures saturated threshold voltage (VGSAT) of a field-effect transistor (FET) at a specified

drain-source current (IDS).

Usage

double vgsat(int d, int g, int s, int sub, double ipgm, double vlim, double vsub)

d Input The drain pin of the device

g Input The gate pin of the device

s Input The source pin of the device

sub Input The substrate pin of the device

ipgm Input The forced drain current, in amperes

vlim Input The drain voltage limit, in volts

vsub Input Substrate bias, in volts

Returns Output Measured gate-source voltage (VGS):

 2.0E+21 = Measured voltage (VGSAT) is within 98% of the specified

voltage limit (vlim)

Details

This subroutine forces gate-source current (IGS) and measures VGS with the drain shorted to the gate.

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VBS is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

A delay is incorporated into the vgsat subroutine; this delay is the calculated time required for stable

forcing of ipgm within the vlim voltage limit.

V/I polarities

N-channel +Ipgm, -VBS

P-channel -Ipgm, +VBS

Source-measure units (SMUs)

SMU1: Forces ipgm, programmed voltage limit, measures vgsat

SMU2: Forces VBS, default current limit

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-75

Example

result = vgsat(d, g, s, sub, ipgm, vlim, vsub)

Schematic

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-76 S500-901-01 Rev. B / January 2019

vp

This subroutine estimates the voltage at which the current flow between the source and drain is blocked

(pinched-off) for a metal-semiconductor field-effect transistor (MESFET) at a specified drain voltage and fraction

of saturated drain current.

Usage

double vp(int d, int g, int s, int sub, double vdss, double idlim, double factor, double

v1, double v2, double *idss, double *ip, int *iflag)

d Input The drain pin of the device

g Input The gate pin of the device

s Input The source pin of the device

sub Input The substrate pin of the device

vdss Input The forced drain voltage, in volts

idlim Input Drain current limit, in amperes

factor Input Fraction of saturated drain current (IDSS)

v1 Input Start of the gate-source voltage (VGS) search, in volts

v2 Input End of the VGS search, in volts

idss Output Measured IDSS, in amperes

ip Output Targeted pinch-off current, in amperes

iflag Output Return status:

 0 = Normal completion

 1 = Device did not trigger

 2 = IDSS is within 98% of drain current limit

 3 = <not used>

 4 = The factor parameter is 0.0 or > 1

 5 = Device triggered on starting voltage

 6 = Device triggered on ending voltage

Returns Output The voltage at which the current flow between the source and drain is
blocked (pinch-off voltage)

Details

This subroutine estimates the pinch-off voltage for a MESFET at a specified drain voltage and fraction
of IDSS. First, it measures IDSS, and then searches for a gate voltage that achieves a targeted pinch-off

current (ip). The ip output parameter is normally described as a fraction of IDSS (usually 0.02 of IDSS).

The trigger and search routines are used to find the VGS that forces the targeted drain-source current

(IDS) value (ip).

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

The factor for IDSS is normally 0.02.

This subroutine does not call the idss subroutine.

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-77

Source-measure units (SMUs)

SMU1: Forces VDS, programmable current limit, sets trigger on IP (IP = IDSS * factor)

SMU2: Searches VGS, default current limit

Example

result = vp(d, g, s, sub, vdss, idlim, factor, v1, v2, &idss, &ip, &iflag)

Schematic

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-78 S500-901-01 Rev. B / January 2019

vp1

This subroutine estimates the voltage at which the current flow between the source and drain is blocked

(pinched-off) for a metal-semiconductor field-effect transistor (MESFET) at a specified pinch-off current and

drain-source voltage (VDS).

Usage

void vp1(int d, int g, int s, int sub, double ids, double vdlim, double vg1, double vg2,

double iglim, double *iflag, double *vp)

d Input The drain pin of the device

g Input The gate pin of the device

s Input The source pin of the device

sub Input The substrate pin of the device

ids Input The forced drain current (IP), in amperes

vdlim Input The drain voltage target, in volts

vg1 Input Start of the gate-source voltage (VGS) search, in volts

vg2 Input End of the VGS search, in volts

iglim Input Gate current limit, in amperes

iflag Output Return status flag:

0 = Normal completion

1 = Pinch-off voltage (VP) is 0.0

2 = Device triggered on starting voltage

3 = Device triggered on ending voltage

vp Output Measured VP

Details

This subroutine is a variant of the vp subroutine. The trigger is set to the specified VDS and pinch-off

current (IP) is forced on the drain. The gate voltage is then searched until the VDS value is reached. At
0 V gate-source voltage (VGS), the drain voltage is below the specified VDS. As VGS is increased, VDS

increases as the device approaches the voltage at which the current flow between the source and
drain is blocked.

If a positive substrate pin is specified, the substrate is grounded. If a positive substrate pin is not
specified, the substrate is left floating.

A delay is incorporated into the vp1 subroutine; this delay is the calculated time required for stable

forcing of drain-source current (IDS) with the VDS voltage limit.

V/I polarities

vg1 and vg2 ensure that polarity forward biases the gate-source diode. The starting voltage, vg1,

must allow the drain SMU to supply pinch-off current without exceeding the limit.

Source-measure units (SMUs)

SMU1: Forces drain-source current (ids), programmable voltage limit, trigger set to VDS

SMU2: Searches VGS, programmable current limit

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-79

Example

vp1(d, g, s, sub, ids, vdlim, vg1, vg2, iglim, &iflag, &vp)

Schematic

vt14

This subroutine estimates the extrapolated threshold voltage (VT) of a metal-oxide field-effect transistor (MOSFET)

using a simple two-point technique.

Usage

double vt14(int d, int g, int s, int sub, double vlow, double vhigh, double vds, double

vbs, double ithr, double niter)

d Input The drain pin of the device

g Input The gate pin of the device

s Input The source pin of the device

sub Input The substrate pin of the device

vlow Input The start of the gate-source voltage (VGS) binary search, in volts

vhigh Input The end of the VGS binary search, in volts

vds Input The forced drain voltage, in volts

vbs Input Substrate bias, in volts

ithr Input The targeted drain current (IDS), in amperes

niter Input The number of iterations in the search

Returns Output The extrapolated threshold voltage

Details

This subroutine does a binary search on VGS to locate the target threshold current using the vtati (on
page 3-80) subroutine. This current is ID1. ID4 is then calculated as 4 * ID1. A binary search is done
again on VGS to find ID4. A linear least-squares (LLSQ) line is fit between these two points, and the VT
parameter is estimated.

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-80 S500-901-01 Rev. B / January 2019

A typical value for niter is 10 iterations. If niter is less than 2, a value of 2 is used. If it is greater

than 16, a value of 16 is used.

V/I polarities

N-channel +VDS, +VG, -VBS, +ITHR

P-channel -VDS, -VG, +VBS, -ITHR

Source-measure units (SMUs)

See the vtati (on page 3-80) subroutine.

Example

result = vt14(d, g, s, sub, vlow, vhigh, vds, vbs, ithr, niter)

vtati

This subroutine returns the value of the threshold voltage (VT) needed to produce a specified drain current (IDS).

Usage

double vtati(int d, int g, int s, int sub, double vlow, double vhigh, double vds, double

vbs, double ithr, int niter)

d Input The drain pin of the device

g Input The gate pin of the device

s Input The source pin of the device

sub Input The substrate pin of the device

vlow Input The start of the gate voltage (VGS) sweep

vhigh Input The end of the VGS sweep

vds Input Drain voltage, in volts

vbs Input Substrate bias, in volts

ithr Input The targeted drain current (IDS), in amperes

niter Input The number of iterations in the search

Returns Output Calculated VT:

 1.0E+21 = Device triggered on starting voltage

 2.0E+21 = Device triggered on end voltage

 4.0E+21 = Measured gate current is within 98% of the 10 µA
current limit

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-81

Details

This subroutine executes a binary search on gate-source voltage (VGS) to find IDS when drain-source
voltage (VDS) and substrate bias voltage (VBS) are fixed. The number of iterations is programmable.

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VBS is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

A typical value for niter is 10 iterations. If niter is less than 2, a value of 2 is used. If it is greater

than 16, a value of 16 is used.

V/I polarities

N-channel +VDS, +Vlow, +Vhigh, -VBS, +ITHR

P-channel -VDS, -Vlow, -Vhigh, +VBS, -ITHR

Source-measure units (SMUs)

SMU1: Force vds, trigger on ithr, default current limit

SMU2: Search VGS, 10.0 μA current limit

SMU3: Force vbs, default current limit

Example

result = vtati(d, g, s, sub, vlow, vhigh, vds, vbs, ithr, niter)

Schematic

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-82 S500-901-01 Rev. B / January 2019

vtext

This subroutine estimates the extrapolated gate-source threshold voltage of a metal-oxide field-effect transistor

(MOSFET).

Usage

double vtext(int d, int g, int s, int sub, char type, double vlow, double vhigh, double

vds, double vbs, double ithr, double vstep, int nmax, double *slope, int *kflag)

d Input The drain pin of the device

g Input The gate pin of the device

s Input The source pin of the device

sub Input The substrate pin of the device

type Input Type of transistor: 'N' or 'P'

vlow Input The start of the gate-source voltage (VGS) binary search, in volts

vhigh Input The end of the VGS binary search, in volts

vds Input The forced drain voltage, in volts

vbs Input Substrate bias, in volts

ithr Input Drain-source trigger current (IDS), in amperes

vstep Input VGS step size, in volts

nmax Input The maximum number of steps

slope Output The calculated slope

kflag Output Return status flag:

 0 = Normal operation

 1 = The ithr parameter is too high; indicates that the vlow

parameter is above the voltage threshold (VT) and the slope is
constantly decreasing

 2 = Did not find peak slope; indicates that the vhigh parameter

was below VT (maximum slope was the last value)

 3 = Binary search on VGS failed; may indicate that the vlow and

vhigh parameters were below VT and the device never turned on

 4 = The type parameter was not specified as 'N' or 'P'

 5 = VGS step size is 0.0

Returns Output Gate-source voltage threshold, in volts.

Details

This subroutine estimates the extrapolated threshold voltage of a MOSFET using the maximum slope
method. Maximum slope refers to the common technique of numerically differentiating the IDS versus
VGS curve. Slope refers to the FET transconductance (gm).

This subroutine uses a two-step method of finding VT. First, a binary search is done on the VGS to find
a drain current (IDS) that is within 0.25 of the estimated threshold current (for most enhancement
devices this value is 1 μA). If the measured IDS value is within tolerance, the routine continues with a
sliding five-point linear least-squares (LLSQ) analysis of the IDS-VGS curve.

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-83

The steps used by this technique to find the maximum slope or maximum gm (where VGS step size is a
user-input variable):

1. From the last point below ithr (threshold IDS), measure four points (IDS, VGS). VGS is stepped,

and IDS is measured.

2. Calculate the first slope. This value is now the MAX SLOPE.

3. Step VGS, measure IDS.

4. Delete the first point in the five-point LLSQ array, and add the most recent point (shift left one

point).

5. Calculate the new slope.

6. Compare the new slope to MAX SLOPE.

7. Repeat steps 3 through 6 until the peak slope is crossed.

8. At peak slope, evaluate the VGS intercept (VG).

9. Calculate VT.

10. Return VT as vtext result and slope.

This subroutine is very sensitive to the VGS step size (vstep) and the start and stop points for the

binary search (vlow, vhigh), but is generally the most accurate way of evaluating the extrapolated

threshold voltage. The vtext2 subroutine is a further variation on this technique. The major

differences are that vtext2 uses the trigger and sweep calls to collect data, and it uses some

refinements in the data analysis. It also runs faster than the vtext subroutine.

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VBS is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

The nmax parameter defaults to 21 steps if a smaller value is entered.

V/I polarities

The polarities of VDS and ITHR are determined by the device type.

The vstep parameter is 10 mV to 100 mV. This depends on the vlow and vhigh parameters. For

an N-channel, if vlow = 0.0 and vhigh = 2.0, vstep should be positive.

Source-measure units (SMUs)

SMU1: Forces vds, default current limit, measures IDS

SMU2: Searches VGS, default current limit

SMU3: Forces vbs, default current limit

Example

result = vtext(d, g, s, sub, type, vlow, vhigh, vds, vbs, ithr, vstep, nmax,

 &slope, &kflag)

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-84 S500-901-01 Rev. B / January 2019

Schematic

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-85

vtext2

This subroutine estimates the extrapolated gate-source threshold voltage of a metal-oxide field-effect transistor

(MOSFET) using a modified version of the vtext subroutine method.

Usage

double vtext2(int d, int g, int s, int sub, double vlow, double vhigh, double vds, double

vbs, double ithr, double vstep, int npts, double *slope, int *kflag)

d Input The drain pin of the device

g Input The gate pin of the device

s Input The source pin of the device

sub Input The substrate pin of the device

vlow Input The start of the gate-source voltage (VGS) binary search, in volts

vhigh Input The end of the VGS binary search, in volts

vds Input Drain voltage, in volts

vbs Input Substrate bias, in volts

ithr Input Drain-source trigger current (IDS), in amperes

vstep Input VGS step size, in volts

npts Input The number of points in the sweep

slope Output The calculated transconductance (gm)

kflag Output Return status flag:

 0 = Normal operation

 1 = The ithr parameter is too high; indicates that the vlow

parameter is above the voltage threshold (VT) and the slope is
constantly decreasing

 2 = Did not find peak slope; indicates that the vhigh parameter

was below VT (maximum slope was the last value)

 3 = Binary search on VGS failed; may indicate that the vlow and

vhigh parameters were below VT and the device never turned on

 4 = VGS step size is 0.0

Returns Output The estimated threshold voltage

Details

This subroutine is a modified version of the vtext (on page 3-82) subroutine. The differences are:

All setup parameters must have the correct sign (polarity)

An initial binary search is done with LPTLib trigi and searchv subroutines

The IDS-VGS data is measured at one time (LPTLib sweepv, smeasi)

The vlow parameter must be algebraically smaller than the vhigh parameter

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-86 S500-901-01 Rev. B / January 2019

The procedural differences are:

A binary search on VGS is done to find IDS (vstart)

Calculate sweep limits: The vlow parameter = vstart

The vhigh parameter = vstart + npts * vstep

Sweep the IDS-VGS data set

Perform a sliding five-point linear least-squares (LLSQ) analysis (as in the vtext subroutine)

If a zero or negative substrate pin is specified, the substrate is left floating. If the pin number is
greater than 0 and VBS is less than 0.9 mV, the substrate is grounded. In all other cases, it is
connected and forced.

The npts parameter must be greater than 5. If a value less than 5 is used, the subroutine uses 5

points by default.

V/I polarities

The polarities of VDS and ITHR are determined by the device type.

The vstep parameter is 10 mV to 100 mV. This depends on the vlow and vhigh parameters. For

an N-channel, if vlow = 0.0 and vhigh = 2.0, vstep should be positive.

Source-measure units (SMUs)

SMU1: Forces vds, default current limit, measures IDS

SMU2: Searches VGS, default current limit

SMU3: Forces vbs, default current limit

Example

result = vtext2(d, g, s, sub, vlow, vhigh, vds, vbs, ithr, vstep, npts,

 &slope, &kflag)

Schematic

Keithley Test Environment (KTE) Programmer's Manual Section 3: PARLib command reference

S500-901-01 Rev. B / January 2019 3-87

vtext3

This subroutine estimates the extrapolated gate-source threshold voltage of a metal-oxide field-effect transistor

(MOSFET) using a condensed version of the vtext and vtext2 subroutine method.

Usage

void vtext3(int d, int g, int s, int sub, double vg1, double vg2, double vds, double

vbs, int npts, double *slope, double *vt, int *flag);

d Input The drain pin of the device

g Input The gate pin of the device

s Input The source pin of the device

sub Input The substrate pin of the device

vg1 Input Start of the gate-source voltage (VGS) search, in volts

vg2 Input End of the VGS search, in volts

vds Input Drain voltage, in volts

vbs Input Substrate bias, in volts

npts Input The number of points in the sweep

slope Output The calculated inductance

vt Output Threshold voltage

flag Output Return status:

0 = Normal operation

1 = Bad data collected

2 = Calculated linear least-squares (LLSQ) slope = 0.0, bad data

Details

This subroutine is the most condensed form of the basic maximum slope techniques to find threshold
voltage (VT).

This subroutine does the following to estimate VT:

1. Sweeps a drain-source current (IDS), gate-source voltage (VGS) array (using the idvsvg

subroutine).

2. Differentiates the data set using dy/dx notation (also known as Leibniz's notation).

3. Finds the maximum slope.

4. Finds the index of the maximum slope in the slope array.

5. Returns the gate-source voltage (VGS) intercept and slope.

V/I polarities

N-channel +VDS, +VG, -VBS

P-channel -VDS, -VG, -VBS

Section 3: PARLib command reference Keithley Test Environment (KTE) Programmer's Manual

3-88 S500-901-01 Rev. B / January 2019

Source-measure units (SMUs)

See the idvsvg (on page 3-52) subroutine.

Example

vtext3(d, g, s, sub, vg1, vg2, vds, vbs, npts, &slope, &vt, &flag);

In this section:

Introduction .. 4-1
How to use the library reference .. 4-1
High-Voltage Library commands .. 4-4

Introduction

The Keithley High-Voltage Library (HVLib) is a set of commands you can use to make measurements

on an S540 Power Semiconductor Test System using the Keithley Test Environment (KTE) software.

You can use these commands in two- and three-terminal measurement applications to measure

capacitance-voltage (C-V), calculate compensation constants, do open, load, and short compensation,

and do breakdown voltage tests.

The commands in this library are only supported for the S540 Power Semiconductor Test System,

which has an HVM1212A Matrix.

For more detailed information about making high-voltage capacitance-voltage (C-V) measurements,

see "High-voltage C-V measurements" in the S540 Reference Manual (part number S540-901-01).

How to use the library reference

The commands in the Keithley Test Environment (KTE) High-Voltage Library (HVLib) are in the C

programming language. Each command is presented in a standard format that follows the pattern

below:

Purpose statement: The first line of text under the command heading contains a brief

explanation of what the command does.

Figure 13: Example purpose statement

Section 4

HVLib command reference

Section 4: HVLib command reference Keithley Test Environment (KTE) Programmer's Manual

4-2 S500-901-01 Rev. B / January 2019

Usage: A line of code representing the prototype of the command, followed by a table listing the

input and output parameters for the command.

Parameters that you specify are shown in monospace italic font. Parameters preceded by an

asterisk (*) are character parameters that are passed into the function (input) or pointers to

information that is returned (output).

Each parameter is preceded by one of the following declarations that specifies the data type for

the parameter: int (integer), double (double-precision floating-point), and char (a character

string).

Figure 14: Example syntax and parameter description

Details: Additional information about using the command.

Figure 15: Example details

Keithley Test Environment (KTE) Programmer's Manual Section 4: HVLib command reference

S500-901-01 Rev. B / January 2019 4-3

Example: Lines of code showing what a call to the command might look like in actual use.

Figure 16: Example command call

Also see: Cross-references to other related commands and topics, where applicable.

Figure 17: Example cross-references

Section 4: HVLib command reference Keithley Test Environment (KTE) Programmer's Manual

4-4 S500-901-01 Rev. B / January 2019

High-Voltage Library commands

The Keithley Test Environment (KTE) High-Voltage Library (HVLib) commands are described in detail

in the following topics.

gate_charge

This command measures the gate charge required to switch on the power transistor.

Models supported

S540

Usage

int gate_charge(int gate, int drain, int source, double Vds, double drainLimitI, double

gateCurrent, double gateMaxV, double timeOut, int measDrain, double *timeArray, int

timeArraySize, double *VgArray, int VgArraySize, double *VgCharge, int VgChargeSize,

double *VdArray, int VdArraySize, double *Slope, int SlopeSize, double Coffset,

double *Ceff, double *Vpl, double *T1, double *T2, double *Qgs, double *Qgd)

gate Input The gate pin

drain Input The drain pin

source Input The source pin

Vds Input Drain voltage

drainLimitI Input Current limit for the drain instrument; 1 A maximum

gateCurrent Input Amount of current to force into the gate

gateMaxV Input Voltage compliance limit for the gate; 200 V maximum

timeOut Input Timeout value for the test; 200 seconds maximum

measDrain Input Flag to enable (1) or disable (0) drain voltage measurement

timeArray Output Array to store timestamps

timeArraySize Input Size of the timeArray parameter

VgArray Output Array to store gate voltage

VgArraySize Input Size of the VgArray parameter

VgCharge Output Array to store gate charge

VgChargeSize Input Size of the VgCharge parameter

VdArray Output Array to store drain voltage

VdArraySize Input Size of the VdArray parameter

Slope Output Array to store slope (gate voltage (Vg) versus time) values

SlopeSize Input Size of the Slope parameter array

Coffset Input Parasitic capacitance of the gate cable

Ceff Output Ratio of total gate charge to maximum gate voltage

Vpl Output Gate voltage of the plateau area

T1 Output Timestamp where the plateau area begins

T2 Output Timestamp where the plateau area ends

Keithley Test Environment (KTE) Programmer's Manual Section 4: HVLib command reference

S500-901-01 Rev. B / January 2019 4-5

Qgs Output Gate to source charge; calculate according to the JEDEC standard
JESD 24-2

Qgd Output Gate to drain charge; calculate according to the JEDEC standard
JESD 24-2

Details

This test does the following:

Verifies input conditions

Sets up a gate SMU and a drain SMU (Model 2636s):

 Sets gate SMU voltage limit to gateMaxV

 Sets gate SMU current range to the fixed 10*gateCurrent range

 Sets drain SMU current compliance and range to drainLimitI

Makes connections

Forces GateCurrent into the gate

Measures gate voltage as a function of time

Optionally (depending on the value of the measDrain parameter, 0 or 1) measures drain voltage

Determines the two points of inflection on the curve of Vg = Vg(Time) and reports it

Adjusts values of the gate charge using the specified parasitic capacitance (Coffset)

Returns effective capacitance, defined as gateMaxV/total-gate-charge

Calculates and returns the gate charges (Qgs and Qgd) values according to the JEDEC standard

JESD 24-2

 Returns the test status

This command returns a status:

1 Success

–1 Gate voltage compliance limit exceeds 200 V

–2 Drain current limit exceeds 1 A

–3 VgArraySize is not equal to timeArraySize

–4 VdArraySize is not equal to timeArraySize

–5 Timeout exceeds maximum: 200 s

–6 Test time exceeds timeout value

–7 Number of measurements exceeds maximum allowed (10000)

–8 SlpSize is not equal to timeArraySize

–9 Compliance or test error

–10 Error calculating S1, correlation factor < 0.9

–11 Error calculating S2, correlation factor < 0.9

Section 4: HVLib command reference Keithley Test Environment (KTE) Programmer's Manual

4-6 S500-901-01 Rev. B / January 2019

–12 Power limit (current should be less than 0.1 A if voltage is greater than 20 V) exceeded

Example

pts = 600;

stats = gate_charge(3, 4, 5, 20, 0.1, 3e-8, 10, 10, 1, Time, pts, Vg, pts,

Vq, pts, Vd, pts, Slp, pts, 3e-10, Coff, Vpl, T1, T2, Qgs, Qgd)

This test implements the JEDEC standard JESD 24-2.

 Also see

None

hv_bvsweep

This command does a breakdown voltage sweep.

Models supported

S540

Usage

int hv_bvsweep(int high1, int high2, int high3, int low1, int low2, int low3, double

vStart, double vStop, double vStep, double stepDelay, double trigCurrent, double

compl, double ratio, double *bV, double *bVR, double *LeakR, double *Vbias, int

VbiasPts, double *Imeas, int ImeasPts)

high1 Input High pin 1

high2 Input High pin 2

high3 Input High pin 3

low1 Input Low pin 1

low2 Input Low pin 2

low3 Input Low pin 3

vStart Input The start voltage of the sweep

vStop Input The stop voltage of the sweep

vStep Input The voltage step size for the sweep

stepDelay Input The step delay, in seconds

trigCurrent Input The current trigger level

compl Input The current limit

ratio Input The ratio of voltage to breakdown voltage at which voltage and current
are reported

bV Output Breakdown voltage

bVR Output Voltage at a specified percent (ratio) of the breakdown voltage

LeakR Output The current level at bVR

Vbias Output The forced voltage bias

VbiasPts Input The number of voltage bias points

Imeas Output The measured current

ImeasPts Input The number of current measure points

Keithley Test Environment (KTE) Programmer's Manual Section 4: HVLib command reference

S500-901-01 Rev. B / January 2019 4-7

Details

This command does the following:

Verifies input conditions

Configures source-measure unit (SMU) and trigger levels

Sweeps voltage from vStart to vStop

Reports breakdown voltage (bV) at the trigger point

Reports leakage at a specified ratio of breakdown voltage

The VbiasPts and ImeasPts parameters are the number of points to use; they should be equal to

or greater than (Vstop – Vstart)/Vstep + 1.

This command returns a status:

1 = Success

-1 = Invalid high pins

–2 = Invalid low pins

–3 = Invalid Vstart and Vstop values

–4 = Invalid ratio; valid range is 0.01 to 0.99

–5 = Invalid trigCurrent; valid range is 1e-9 A to 0.001 A

–6 = Invalid vStep; valid range is 0.1 V to 20 V

–7 = Invalid stepDelay; valid range is 0.001 s to 0.5 s

–8 = Wrong number of points; should be equal to or larger than (Vstop – Vstart)/Vstep + 1

–9 = Low-voltage pins are used for high-voltage test

–10 = Test is too fast; slow it down or increase the trigCurrent level

Example

startV = 0

stopV = 2500.0

status = hv_bvsweep(pin1, -1, -1, pin2, -1, -1,startV, stopV, 5, 0.1,1e-6,1e-5,

0.85, BV, BVR, Leak, Vbias, 501, Imeas, 501)

Measures breakdown voltage by sweeping 0 V to 2500 V in 5 V steps.

Also see

None

Section 4: HVLib command reference Keithley Test Environment (KTE) Programmer's Manual

4-8 S500-901-01 Rev. B / January 2019

hvcv_3term

This command measures output capacitance (Coss), input capacitance (Ciss), or short-circuit reverse transfer

capacitance (Crss) of three-terminal devices.

Models supported

S540

Usage

int hvcv_3term(int drain, int gate, int source, double gateV, double startV, double

stopV, char *mode, char *dut, char *comp_mode, double Freq, int doComp, int doRetest,

double *drainV, int drainVPts, double *drainI, int drainIPts, double *Cp, int CpPts,

double *D, int DPts, double *Gp, int GpPts)

drain Input Drain pin

gate Input Gate pin

source Input Source pin

gateV Input Gate voltage

startV Input Start voltage of drain voltage sweep

stopV Input Stop voltage of drain voltage sweep

mode Input Bias connections mode (Ciss, Coss, or Crss)

dut Input Device under test; valid options:

 dut = Test the DUT itself with the high-voltage capacitance meter

(CMTR)

 open = Characterize the open device using the high-voltage

CMTR; this can be done with the chuck down (pins not in contact
with the device)

 short = Characterize the short device using the high-voltage

CMTR

 load = Characterize the load device using the high-voltage CMTR

 shortEx = Characterize the short device using the low-voltage

capacitance meter (CMTR); this data is used to do CompShort

compensation of the loadEx device

 loadEx = Measure the load device using the low-voltage CMTR

to get the expected value of the loadEx device

 openEx = Characterize the open device using the low-voltage

CMTR; this data is used to do CompOpen compensation of the

loadEx device

Keithley Test Environment (KTE) Programmer's Manual Section 4: HVLib command reference

S500-901-01 Rev. B / January 2019 4-9

comp_mode Input Compensation type:

 CompNone (use this if you do not want to run any compensation or

if the dut parameter is set to anything other than dut)

 CompOpen

 CompShort

 CompLoad

 CompOpenLoad

 CompShortOpen

 CompShortLoad

 CompShortOpenLoad

Freq Input Frequency; recommended frequency is 1e5 Hz

doComp Input Specifies whether to do system-level compensation:

 0 = Do not do system-level compensation

 1 = Do system-level compensation

doRetest Input Specifies whether to remeasure compensation data:

 0 = Do not remeasure compensation data

 1 = Remeasure compensation data once, then reuse that

measurement in any additional calls

See Details for more information

drainV Output Drain voltage array

drainVPts Input Number of drain voltage points in the array

drainI Output Drain current array

drainIPts Input Number of drain current points in the array

Cp Output Capacitance

CpPts Input Compensated capacitance points

D Output Dissipation factor

DPts Input Compensated dissipation factor points

Gp Output Compensated conductance

GpPts Input Compensated conductance points

Details

This command can also do open compensation of the device under test (DUT), defined by the

comp_mode parameter. This includes separate CompOpen, CompShort, and CompLoad

compensation or any combination of these modes (for example, CompOpenLoad, CompShortOpen,

CompShortOpenLoad). If compensation data (open, short, load, loadEx, openEx, shortEx) is

not available before device testing, an error is returned.

For best results measuring Crss, suppress the AC signal at the source terminal by connecting the
high-voltage ground (HV GND) terminal to the source. In a system configured with a high-voltage
matrix and long high-voltage cables, passive AC guarding (GND) provides superior performance over
AC guarding using bias tees.

Section 4: HVLib command reference Keithley Test Environment (KTE) Programmer's Manual

4-10 S500-901-01 Rev. B / January 2019

This command also collects compensation data for open, short, load, loadEx, openEx, and

shortEx. Compensation data for openEx and loadEx is collected using the low-voltage CMTR,

bypassing the bias-tees.

The doComp parameter provides a switch that enables or disables system-level compensation. To do

ShortOpenLoad compensation using a system-level compensation file that is stored on the system

(cvCALsystem.ini), set this parameter to 1. To do ShortOpenLoad compensation using a

user-generated compensation file (cvCAL.ini), set this parameter to 2.

The doRetest parameter provides a switch that enables or disables remeasurement of the

compensation data.

This command returns a status:

-1 = Arrays have a different number of output points; all arrays must have the same number of

points

-2 = Gate, drain, or source pins are not defined

-3 = Invalid dut parameter name; valid names are dut, open, load, loadEx, openEx, and

shortEx

-4 = Invalid compensation mode (comp_mode) name; valid names are CompNone, CompOpen,

CompShort, CompLoad, CompOpenLoad, CompShortOpen, CompShortEx, and

CompShortOpenLoad

-5 = Error when moving chuck down

-6 = Invalid mode parameter name; valid names are Crss, Coss, and Ciss

-7 = Low voltage pin is used for high-voltage test

Example

status = hvcv_3term(drain, gate, source, 0, 0, 10, "Ciss", "dut", "CompOpen", 1e5,

1, 1, drainV, 11, drainI, 11, Cp, 11, D, 11, Gp, 11)

Measures Ciss of a three-terminal device.

Also see

hvcv_3term_basic (on page 4-11)

Keithley Test Environment (KTE) Programmer's Manual Section 4: HVLib command reference

S500-901-01 Rev. B / January 2019 4-11

hvcv_3term_basic

This command measures output capacitance (Coss), input capacitance (Ciss), or short-circuit reverse transfer

capacitance (Crss) of three-terminal devices.

Models supported

S540

Usage

int hvcv_3term_basic(int drain, int gate, int source, double gateV, double startV,

double stopV, char *mode, double Freq, double *drainV, int drainVPts, double *drainI,

int drainIPts, double *Cp, int CpPts, double *D, int DPts, double *Gp, int GpPts)

drain Input Drain pin

gate Input Gate pin

source Input Source pin

gateV Input Gate voltage

startV Input Start voltage of drain voltage sweep

stopV Input Stop voltage of drain voltage sweep

mode Input Bias connections mode (Ciss, Coss, or Crss)

Freq Input Frequency; recommended frequency is 1e5 Hz

drainV Output Drain voltage array

drainVPts Input Number of drain voltage points in the array

drainI Output Drain current array

drainIPts Input Number of drain current points in the array

Cp Output Capacitance

CpPts Input Compensated capacitance points

D Output Dissipation factor

DPts Input Compensated dissipation factor points

Gp Output Compensated conductance

GpPts Input Compensated conductance points

Details

For best results measuring Crss, suppress the AC signal at the source terminal by connecting the
high-voltage ground (HV GND) terminal to the source. In a system configured with a high-voltage
matrix and long high-voltage cables, passive AC guarding (GND) provides superior performance over
AC guarding using bias tees.

Section 4: HVLib command reference Keithley Test Environment (KTE) Programmer's Manual

4-12 S500-901-01 Rev. B / January 2019

This command returns a status:

0 = Skip system-level compensation

-1 = Arrays have a different number of output points; all arrays must have the same number of

points

-2 = Gate, drain, or source pins are not defined

-3 = Invalid dut parameter name; valid names are dut, open, load, loadEx, openEx, and

shortEx

-5 = Error when moving chuck down

-6 = Invalid mode parameter name; valid names are Crss, Coss, and Ciss

-7 = Low voltage pin is used for high-voltage test

Example

status = hvcv_3term(drain, gate, source, 0, 0, 10, "Ciss", 1e5, drainV, 11, drainI,

11, Cp, 11, D, 11, Gp, 11)

Measures Ciss of a three-terminal device.

Also see

hvcv_3term (on page 4-8)

Keithley Test Environment (KTE) Programmer's Manual Section 4: HVLib command reference

S500-901-01 Rev. B / January 2019 4-13

hvcv_comp

This command does complex mathematical calculations to implement specified impedance compensation models.

Models supported

S540

Usage

int hvcv_comp(char *label, char *comp_mode, double Freq, double *CpComp, double *GpComp,

double *DComp)

label Input Device name (label), for example, DUT1 or p1_3

comp_mode Input Compensation type:

 CompNone (use this if you do not want to run any compensation or

if the dut parameter is set to anything other than dut)

 CompOpen

 CompShort

 CompLoad

 CompOpenLoad

 CompShortOpen

 CompShortLoad

 CompShortOpenLoad

Freq Input Frequency (1e4 to 2e6)

CpComp Output Compensated capacitance (Cp) value after correction

GpComp Output Compensated conductance (Gp) value after correction

DComp Output Compensated dissipation factor after correction

cal Output Value of calibration constants

Details

This command does the following:

Verifies input conditions

Gets capacitance-voltage (Cp, Gp) data for the specified device label and all specified device

types (dut, open, short, load)

Runs compensation model specified by the comp_mode parameter

Reports corrected Cp and Gp values

This command does separate CompOpen, CompShort, and CompLoad compensation or any

combination of these modes (for example, CompOpenLoad, CompShortOpen,

CompShortOpenLoad). If compensation data is not already stored in the data pool when device

testing is done or incorrect labels are used, an error is returned.

Section 4: HVLib command reference Keithley Test Environment (KTE) Programmer's Manual

4-14 S500-901-01 Rev. B / January 2019

This command returns a status:

1 = Success

-1 = Device label is NULL

-2 = Device label is less than 2 characters or more than 64

-3 = Invalid compensation mode; valid modes are CompNone, CompOpen, CompLoad,

CompShort, CompOpenLoad, CompShortEx, CompShortOpen, or CompShortOpenLoad

-4 = Frequency is out of valid range (1e4 to 2e6)

-5 = Failed on data retrieval for DUT

-6 = Failed on data retrieval for open

-7 = Failed on data retrieval for short

-8 = Failed on data retrieval for load

-9 = Failed on data retrieval for loadEx

Example

stat = hvcv_comp("pin1_pin2", "CompShortOpen", 1e5, CpComp, GpComp, DComp, Cal)

Does ShortOpen compensation on the device named pin1_pin2 and returns the Cp, Gp, and D values after

compensation.

Also see

None

hvcv_genCompData

This command generates correction factors for system-level high-voltage capacitance-voltage (C-V)

compensation.

Models supported

S540

Usage

int hvcv_genCompData(int hpin, int lpin)

hpin Input Pin for the capacitance meter (CMTR) high signal

lpin Input Pin for CMTR low signal

Details

The correction factors generated by this command are saved as calibration constants in

/opt/kiS530/cvCAL.ini. These calibration constants are used by the hvcv_intgcg command.

CompOpen, CompShort, and CompLoad devices must be connected to run this procedure. Select a

CompLoad device with a value close to the capacitance you are measuring. If you are configuring

three-terminal capacitance measurements, use a 1 nF to 2 nF capacitor.

Keithley Test Environment (KTE) Programmer's Manual Section 4: HVLib command reference

S500-901-01 Rev. B / January 2019 4-15

This command uses the low-voltage CMTR as a calibration tool to provide load values for
high-voltage CMTR characterization.

This command returns a status:

1 = Success

-1 = Low or high pins are not defined

-2 = Open measurement failed

-3 = Open correction canceled

-4 = Short measurement failed

-5 = Short correction canceled

-6 = Load measurement failed

-7 = Load correction canceled

-8 = DUT/load measurement failed

-9 = Failed to open /opt/kiS530/cvCAL.ini file

-10 = Failed running compensation calculations

Example

status= hvcv_genCompData(pin1, pin2)

Generates compensation factors for pin 1 and pin 2.

Also see

None

Section 4: HVLib command reference Keithley Test Environment (KTE) Programmer's Manual

4-16 S500-901-01 Rev. B / January 2019

hvcv_genCompFreq

This command generates compensation factors for system-level capacitance compensation for a single specified

frequency.

Models supported

S540

Usage

int hvcv_genCompFreq(int hpin, int lpin, int epin, int CMTRs, double Freq, double Cp,

double Gp, double *CpCalc, double *GpCalc)

hpin Input Pin for the capacitance meter (CMTR) high signal

lpin Input Pin for CMTR low signal

epin Input Extra pin

CMTRs Input Number of CMTRs to use to do capacitance-voltage compensation:

1 = Use only high-voltage CMTR for compensation measurements; for

load values, use the CP and GP parameters

2 = Use both high-voltage and low-voltage CMTRs to obtain Cp and Gp

values (user-specified values using the Cp and Gp parameters are

ignored); the low-voltage CMTR obtains the Cp and the high-voltage

CMTR obtains the Gp.

Freq Input Frequency

Cp Input Expected or known value for compensated capacitance; use when

low-voltage CMTR cannot be used to collect Cp value

Gp Input Expected or known value for compensated conductance; use when

low-voltage CMTR cannot be used to collect Gp value

CpCalc Output Corrected value for compensated capacitance; should be close to the
expected, known, and measured values on low-voltage CMTR

GpCalc Output Corrected value for compensated conductance; should be close to the
expected, known, and measured values on low-voltage CMTR

Details

This command can be used in two different CMTR configurations, as specified by the CMTRs

parameter:

1 = Using only a high-voltage CMTR connected through bias tees; you must provide values for

the load device, compensated capacitance, and compensated conductance

2 = Using a low-voltage CMTR and a high-voltage CMTR; the low-voltage CMTR bypasses the

bias tees and provides data for the load device (user-specified values using the Cp and Gp

parameters are ignored)

When the command runs successfully, correction factors are displayed on the computer. You can

then add these values to the /opt/kiS530/cvCAL.ini file.

The correction factors are not automatically added to the /opt/kiS530/cvCAL.ini file; you must

add them.

Keithley Test Environment (KTE) Programmer's Manual Section 4: HVLib command reference

S500-901-01 Rev. B / January 2019 4-17

This command returns a status:

1 = Success

-1 = Low or high pins are not defined

-2 = Open measurement failed

-3 = Open correction canceled

-4 = Short measurement failed

-5 = Short correction canceled

-6 = Load measurement failed

-7 = Load correction canceled

-8 = DUT or load measurement failed

-9 = Low-voltage measurement of DUT failed

-10 = Storing expected value failed

-11 = CompShortOpenLoad compensation routine failed

-12 = Correction data does not match expected data

Example

Freq = 1e5

Cp = 1.23e-9

Gp = 4.5e-6

CMTRs = 2

status = hvcv_genCompFreq(pin1, pin2, -1, CMTRs, Freq, Cp, Gp, CpCalc, GpCalc);

Collects the compensation factor for one frequency.

Also see

None

Section 4: HVLib command reference Keithley Test Environment (KTE) Programmer's Manual

4-18 S500-901-01 Rev. B / January 2019

hvcv_getData

This command gets compensated capacitance (Cp) and compensated conductance (Gp) data from the data pool.

Models supported

S540

Usage

int hvcv_getData(char *label, char *dut, double Freq, double *Cp, double *Gp)

label Input Device name (label), for example, DUT1 or p1_3

dut Input Device type (dut, open, short, load, loadEx, shortEx, or
openEx)

Freq Input Frequency (1e4 to 2e6)

Cp Output Compensated capacitance value

Gp Output Compensated conductance value

Details

This command gets Cp and Gp data from the data pool using a keyword that specifies which device to

get the data from. The keyword is derived by combining the device name (label), device type, and

frequency. For example, the keyword trans1_dut_10000 identifies the device named trans1, with

a device type of dut, at a frequency of 1e+4 Hz.

This command returns a status:

1 = Success

-1 = Device label is NULL

-2 = Device label is less than 2 characters or more than 64

-3 = DUT is not one of the following: dut, open, short, load, loadEx, shortEx, or openEx

-4 = Frequency is out of valid range (1e4 to 2e6)

-5 = Failed to read values from data pool

Example

status = hvcv_getData("pin1_pin2", "dut", 1e5, Cp, Gp)

Gets capacitance-voltage (C-V) data with the label pin1_pin2 from a data pool.

Also see

None

Keithley Test Environment (KTE) Programmer's Manual Section 4: HVLib command reference

S500-901-01 Rev. B / January 2019 4-19

hvcv_intgcg

This command measures capacitance and does system-level ShortOpenLoad compensation on the high-voltage

capacitance meter (CMTR).

Models supported

S540

Usage

void hvcv_intgcg(int instr, int doComp, double Freq, double *Cp, double *Gp)

instr Input High-voltage CMTR (CMTR2)

doComp Input Specifies whether to do ShortOpenLoad compensation:

 0 = Do not do ShortOpenLoad compensation

 1 = Do ShortOpenLoad compensation using a system-level file

installed on the system (cvCALsystem.ini)

 2 = Do ShortOpenLoad compensation using a user-created file

(cvCAL.ini)

Freq Input Frequency

Cp Input Capacitance value, according to the parallel capacitor model

Gp Input Conductance value, according to the parallel capacitor model

Details

This command does the following:

Reads compensation CompOpen, CompShort, and gain correction parameters from

/opt/kiS530/cvCAL.ini

Makes a standard capacitance-voltage (C-V) measurement using the intgcv LPT command

Does CompOpen, CompShort, and CompLoad compensation on the C-V measurements

Use this command instead of the intgcg Linear Parametric Test (LPT) command when you need to

compensate for connections through bias tees.

The hvcv_intgcg command measures capacitance like the standard intgcg command, but it also

does system-level compensation using a single set of constants stored in the

/opt/kiS530/cvCAL.ini file. These constants are created using the hvcv_genCompData and

hvcv_genCompFreq commands.

The instrument specified by the instr parameter must be a high-voltage CMTR (CMTR2).

Section 4: HVLib command reference Keithley Test Environment (KTE) Programmer's Manual

4-20 S500-901-01 Rev. B / January 2019

Example

hvcv_intgcg(CMTR2, 1, 1e5, Cp, Gp)

Measures capacitance and does system-level ShortOpenLoad compensation on the high-voltage

capacitance meter.

Also see

hvcv_genCompData (on page 4-14)

hvcv_genCompFreq (on page 4-16)

Keithley Test Environment (KTE) Programmer's Manual Section 4: HVLib command reference

S500-901-01 Rev. B / January 2019 4-21

hvcv_measure

This command measures and stores compensated capacitance (Cp) and compensated conductance (Gp) values.

Models supported

S540

Usage

int hvcv_measure(int instr, char *label, char *dut, double Freq, double ACV, double PLC,

int doComp, double *Cp, double *Gp, double *D)

instr Input Capacitance meter (CMTR) instrument ID

label Input Device name (label), for example, DUT1 or p1_3

dut Input Device under test; valid options:

 dut = Test the DUT itself with the high-voltage capacitance

meter (CMTR)

 open = Characterize the open device using the high-voltage

CMTR; this can be done with the chuck down (pins not in
contact with the device)

 short = Characterize the short device using the high-voltage

CMTR

 load = Characterize the load device using the high-voltage

CMTR

 shortEx = Characterize the short device using the low-voltage

capacitance meter (CMTR); this data is used to do CompShort

compensation of the loadEx device

 loadEx = Measure the load device using the low-voltage CMTR

to get the expected value of the loadEx device

 openEx = Characterize the open device using the low-voltage

CMTR; this data is used to do CompOpen compensation of the

loadEx device

Freq Input Frequency (1e4 to 2e6)

ACV Input AC amplitude level

PLC Input Power line integration time (recommend 1 to 3 PLC)

doComp Input Specifies whether to do system-level compensation:

 0 = Do not do ShortOpenLoad compensation

 1 = Do ShortOpenLoad compensation using
cvCALsystem.ini

 2 = Do ShortOpenLoad compensation using a user-created file

(cvCAL.ini)

Cp Output Compensated capacitance value

Gp Output Compensated conductance value

D Output Dissipation factor

Section 4: HVLib command reference Keithley Test Environment (KTE) Programmer's Manual

4-22 S500-901-01 Rev. B / January 2019

Details

This command does the following:

Verifies input conditions

Configures the CMTR with the specified ACV, Freq, and PLC

Disables all compensation operations on the CMTR

Configures a parallel measurement model (CpGp)

If the CMTR is high-voltage and requires system-level compensation, this command calls the

hvcv_intgcg command, which does system-level ShortOpenLoad compensation; if the CMTR

is low-voltage, this command calls the intgcg LPT command, which does not do system-level

compensation

Makes capacitance measurements

Using the hvcv_storeData command, stores Cp and Gp data with the specified label, dut,

and freq parameters in the data pool

This command returns a status:

1 = Success

-1 = Device label is NULL

-2 = Device label is less than 2 characters or more than 64

-3 = The dut parameter is not one of the following: dut, open, short, load, loadEx,

shortEx, or openEx

-4 = Frequency is out of the valid range (1e4 to 2e6)

-5 = The ACV parameter value exceeds 0.1 V or less than 0.01 V

-6 = The PLC parameter value is out of range (0.1 to 30)

Example

ACV = 0.1

doComp = 1

status = hvcv_measure(CMTR1, "pin1_pin2", "dut", 1e5, ACV, 1, doComp, Cp, Gp, D)

Measures and stores Cp and Gp values from CMTR1 to the data pool under the label pin1_pin2.

Also see

hvcv_intgcg (on page 4-19)

Keithley Test Environment (KTE) Programmer's Manual Section 4: HVLib command reference

S500-901-01 Rev. B / January 2019 4-23

hvcv_storeData

This command stores compensated capacitance (Cp) and compensated conductance (Gp) data in the data pool.

Models supported

S540

Usage

int hvcv_storeData(char *label, char *dut, double Freq, double Cp, double Gp)

label Input Device name (label), for example, DUT1 or p1_3

dut Input Device type (dut, open, short, load, loadEx, shortEx, or
openEx)

Freq Input Frequency (1e4 to 2e6)

Cp Input Compensated capacitance value

Gp Input Compensated conductance value

Details

This command stores Cp and Gp data in the data pool under a keyword that identifies a specific

device. The keyword is derived by combining the device name (label), device type, and frequency.

For example, the keyword trans1_dut_10000 identifies the device named trans1, with a device

type of dut, at a frequency of 1e+4 Hz.

This command returns a status:

1 = Success

-1 = Device label is NULL

-2 = Device name is less than two characters or more than 64

-3 = The dut parameter is not one of the following values: dut, open, short, load, loadEx, or

openEx

-4 = Frequency is out of valid range (1e4 to 2e6)

Example

status = hvcv_storeData("pin1_pin2", "dut", 1e5,12.2e-12,1.56e-8)

Stores capacitance-voltage (C-V) data in the data pool with the label pin1_pin2.

Also see

None

Section 4: HVLib command reference Keithley Test Environment (KTE) Programmer's Manual

4-24 S500-901-01 Rev. B / January 2019

hvcv_sweep

This command does a high-voltage capacitance-voltage (C-V) sweep.

Models supported

S540

Usage

int hvcv_sweep(int high_pin1, int high_pin2, int high_pin3, int low_pin1, int low_pin2,

int low_pin3, char *dut, char *comp_mode, int doComp, char forceSide, int doRetest,

double Freq, double startV, double stopV, double *Vbias, int Vpts, double *Ileak,

int Ipts, double *Cp, int CpPts, double *D, int Dpts, double *Gp, int GpPts)

high_pin1 Input First pin to connect to high-voltage capacitance meter (CMTR) high
side

high_pin2 Input Second pin to connect to high-voltage CMTR high side

high_pin3 Input Third pin to connect to high-voltage CMTR high side

low_pin1 Input First pin to connect to high-voltage CMTR low side

low_pin2 Input Second pin to connect to high-voltage CMTR low side

low_pin3 Input Third pin to connect to high-voltage CMTR low side

dut Input Device under test; valid options:

 dut = Test the DUT itself with the high-voltage capacitance

meter (CMTR)

 open = Characterize the open device using the high-voltage

CMTR; this can be done with the chuck down (pins not in
contact with the device)

 short = Characterize the short device using the high-voltage

CMTR

 load = Characterize the load device using the high-voltage

CMTR

 shortEx = Characterize the short device using the low-voltage

capacitance meter (CMTR); this data is used to do CompShort

compensation of the loadEx device

 loadEx = Measure the load device using the low-voltage CMTR

to get the expected value of the loadEx device

 openEx = Characterize the open device using the low-voltage

CMTR; this data is used to do CompOpen compensation of the

loadEx device

Keithley Test Environment (KTE) Programmer's Manual Section 4: HVLib command reference

S500-901-01 Rev. B / January 2019 4-25

comp_mode Input Compensation type:

 CompNone (use this if you do not want to run any compensation

or if the dut parameter is set to anything other than dut)

 CompOpen

 CompShort

 CompLoad

 CompOpenLoad

 CompShortOpen

 CompShortLoad

 CompShortOpenLoad

doComp Input Specifies whether to do ShortOpenLoad compensation:

 0 = Do not do ShortOpenLoad compensation

 1 = Do ShortOpenLoad compensation using a system-level file

installed on the system (cvCALsystem.ini)

 2 = Do ShortOpenLoad compensation using a user-created file

(cvCAL.ini)

forceSide Input Side used to force DC bias voltage:

"H" = High (CMTR1H, CMTR2H)

"L" = Low (CMTR1L, CMTR2L)

doRetest Input Specifies whether to remeasure compensation data:

 0 = Do not remeasure compensation data

 1 = Remeasure compensation data once, then reuse that

measurement in any additional calls

See Details for more information

Freq Input Frequency (1e4 to 2e6)

startV Input Sweep start bias

stopV Input Sweep stop bias

Vbias Output Sweep of voltage bias points

Vpts Input Sweep size; must be same as Ipts, CpPts, Dpts, GpPts

Ileak Output Leakage current

Ipts Input Sweep size; must be same as Vpts, CpPts, Dpts, GpPts

Cp Output Compensated capacitance value

CpPts Input Sweep size; must be same as Vpts, Ipts, Dpts, GpPts

D Output Compensated dissipation factor

Dpts Input Sweep size; must be same as Vpts, Ipts, CpPts, GpPts

Gp Output Compensated conductance value

GpPts Input Sweep size; must be same as Vpts, Ipts, CpPts, Dpts

Section 4: HVLib command reference Keithley Test Environment (KTE) Programmer's Manual

4-26 S500-901-01 Rev. B / January 2019

Details

This command does the following:

Verifies input conditions and checks pins

Checks whether the compensation mode (comp_mode) is valid

Makes connections to CMTR1 and CMTR2

Uses the high-voltage CMTR (CTMR2) for the dut parameter options dut, open, short, and

load; uses the low-voltage CMTR (CMTR1) for dut parameter options loadEx, openEx, and

shortEx

Forces sweep voltage and measures current

Calls the hvcv_measure command to measure Cp and Gp

When the dut parameter is set to open or openEx, the routine moves the chuck down,

measures, and moves the chuck up again

 Runs compensation according to the compensation mode (comp_mode)

This command returns a status:

1 = Success

–1 = No valid pins

–2 = Wrong number of points

–3 = No valid compensation mode is specified; valid options are CompNone, CompOpen,

CompLoad, CompShort, CompShortOpen, CompShortEx, CompShortOpenLoad

–4 = No valid DUT is specified; valid options are dut, open, and short

–5 = Frequency is out of valid range (1e4 to 2e6)

–6 = Error with prober chuck moving down

–7 = Error in the compensation procedure

–8 = Low-voltage pin is used for high-voltage test

Use the doRetest parameter to save time when you are characterizing a compensation device

(open, short, or load) in an automated setting where test macros are repeated multiple times on a

wafer or group of wafers. When this parameter is set to 1, the compensation device is retested once

the first time the test macro is encountered. Any further calls to the test macro during the test plan run
automatically use the value from the retest.

Keithley Test Environment (KTE) Programmer's Manual Section 4: HVLib command reference

S500-901-01 Rev. B / January 2019 4-27

Example

status = hvcv_sweep(pin1, -1, -1, pin2, -1, -1, "dut", "CompNone", 1, "H", 1,

1e5, 0, 10, Vbias, 11, Ileak, 11, Cp, 11, D, 11, Gp, 11)

Performs an 11-point high-voltage C-V sweep.

Also see

hvcv_comp (on page 4-13)

hvcv_measure (on page 4-21)

hvcv_sweep_basic (on page 4-27)

hvcv_sweep_basic

This command does a high-voltage capacitance-voltage (C-V) sweep.

Models supported

S540

Usage

int hvcv_sweep(int high_pin1, int high_pin2, int high_pin3, int low_pin1, int low_pin2,

int low_pin3, char forceSide, double Freq, double startV, double stopV, double

*Vbias, int Vpts, double *Ileak, int Ipts, double *Cp, int CpPts, double *D, int Dpts,

double *Gp, int GpPts)

high_pin1 Input First pin to connect to high-voltage capacitance meter (CMTR) high
side

high_pin2 Input Second pin to connect to high-voltage CMTR high side

high_pin3 Input Third pin to connect to high-voltage CMTR high side

low_pin1 Input First pin to connect to high-voltage CMTR low side

low_pin2 Input Second pin to connect to high-voltage CMTR low side

low_pin3 Input Third pin to connect to high-voltage CMTR low side

forceSide Input Side used to force DC bias voltage:

"H" = High (CMTR1H, CMTR2H)

"L" = Low (CMTR1L, CMTR2L)

Freq Input Frequency (1e4 to 2e6)

startV Input Sweep start bias

stopV Input Sweep stop bias

Vbias Output Sweep of voltage bias points

Vpts Input Sweep size; must be same as Ipts, CpPts, Dpts, GpPts

Ileak Output Leakage current

Ipts Input Sweep size; must be same as Vpts, CpPts, Dpts, GpPts

Cp Output Compensated capacitance value

CpPts Input Sweep size; must be same as Vpts, Ipts, Dpts, GpPts

D Output Compensated dissipation factor

Dpts Input Sweep size; must be same as Vpts, Ipts, CpPts, GpPts

Gp Output Compensated conductance value

GpPts Input Sweep size; must be same as Vpts, Ipts, CpPts, Dpts

Section 4: HVLib command reference Keithley Test Environment (KTE) Programmer's Manual

4-28 S500-901-01 Rev. B / January 2019

Details

This command does the following:

Verifies input conditions and checks pins

Forces sweep voltage and measures current

Calls the hvcv_measure command to measure Cp and Gp

This command returns a status:

1 = Success

–1 = No valid pins

–2 = Wrong number of points

–5 = Frequency is out of valid range (1e4 to 2e6)

–6 = Error with prober chuck moving down

–8 = Low-voltage pin is used for high-voltage test

Example

status = hvcv_sweep(pin1, -1, -1, pin2, -1, -1, "H", 1e5, 0,

10, Vbias, 11, Ileak, 11, Cp, 11, D, 11, Gp, 11)

Performs an 11-point high-voltage C-V sweep.

Also see

hvcv_measure (on page 4-21)

hvcv_sweep (on page 4-24)

Keithley Test Environment (KTE) Programmer's Manual Section 4: HVLib command reference

S500-901-01 Rev. B / January 2019 4-29

hvcv_test

This command makes a high-voltage capacitance-voltage (C-V) measurement at a single frequency.

Models supported

S540

Usage

int hvcv_test(int high_pin1, int high_pin2, int high_pin3, int low_pin1, int low_pin2,

int low_pin3, char *dut, char *comp_mode, int doComp, int doRetest, double Freq,

double biasV, double *Cp, double *Gp, double *D, double *iCurr)

high_pin1 Input First pin to connect to high-voltage capacitance meter (CMTR) high
side

high_pin2 Input Second pin to connect to high-voltage CMTR high side

high_pin3 Input Third pin to connect to high-voltage CMTR high side

low_pin1 Input First pin to connect to high-voltage CMTR low side

low_pin2 Input Second pin to connect to high-voltage CMTR low side

low_pin3 Input Third pin to connect to high-voltage CMTR low side

dut Input Device under test; valid options:

 dut = Test the DUT itself with the high-voltage capacitance

meter (CMTR)

 open = Characterize the open device using the high-voltage

CMTR; this can be done with the chuck down (pins not in
contact with the device)

 short = Characterize the short device using the high-voltage

CMTR

 load = Characterize the load device using the high-voltage

CMTR

 shortEx = Characterize the short device using the low-voltage

capacitance meter (CMTR); this data is used to do CompShort

compensation of the loadEx device

 loadEx = Measure the load device using the low-voltage CMTR

to get the expected value of the loadEx device

 openEx = Characterize the open device using the low-voltage

CMTR; this data is used to do CompOpen compensation of the

loadEx device

Section 4: HVLib command reference Keithley Test Environment (KTE) Programmer's Manual

4-30 S500-901-01 Rev. B / January 2019

comp_mode Input Compensation type:

 CompNone (use this if you do not want to run any compensation

or if the dut parameter is set to anything other than dut)

 CompOpen

 CompShort

 CompLoad

 CompOpenLoad

 CompShortOpen

 CompShortLoad

 CompShortOpenLoad

doComp Input Specifies whether to do system-level compensation:

 0 = Do not do ShortOpenLoad compensation

 1 = Do ShortOpenLoad compensation using
cvCALsystem.ini

 2 = Do ShortOpenLoad compensation using a user-created file

(cvCAL.ini)

doRetest Input Specifies whether to remeasure compensation data:

 0 = Do not remeasure compensation data

 1 = Remeasure compensation data once, then reuse that

measurement in any additional calls

See Details for more information

Freq Input Frequency (1e3 to 3e6)

biasV Input Voltage bias

Cp Output Compensated capacitance value

Gp Output Compensated conductance value

D Output Compensated dissipation factor

iCurr Output Leakage current at the biasV voltage

Details

This command does the following:

Verifies input conditions and checks pins

Checks whether the compensation mode (comp_mode) is valid

Makes connections to CMTR1 and CMTR2

Uses the high-voltage CMTR (CTMR2) for the dut parameter options dut, open, short, and

load; uses the low-voltage CMTR (CMTR1) for dut parameter options loadEx, openEx, and

shortEx

Forces biasV

Measures Cp and Gp by calling the hvcv_measure command

 When the dut parameter is set to open or openEx, the routine moves the chuck down,

measures, and moves the chuck up again

Keithley Test Environment (KTE) Programmer's Manual Section 4: HVLib command reference

S500-901-01 Rev. B / January 2019 4-31

 Runs compensation as specified by the comp_mode parameter

This command returns a status:

0 = Skip system-level compensation

1 = Success

–1 = No valid pins

–2 = No valid compensation mode is specified; valid options are CompNone, CompOpen,

CompLoad, CompShort, CompShortOpen, CompShortEx, CompShortOpenLoad

–3 = No valid dut parameter is specified; valid options are dut, open, or short

–4 = Frequency is out of valid range (1e3 to 3e6)

–5 = Error with PrChuck

–6 = Error in the compensation procedure

–7 = Low-voltage pin is used for high-voltage test

If compensation data (open, short, load, loadEx, openEx, shortEx) is not available before DUT

testing, an error is generated.

This command collects dut, open, short, or load data with a high-voltage CMTR on the dut,

open, short, or load device.

This command collects openEx, loadEx, or shortEx data with a low-voltage CMTR on an open,

load, or short structure.

The doComp parameter provides a switch that enables or disables system-level compensation. To do

ShortOpenLoad compensation using a system-level compensation file that is stored on the system

(cvCALsystem.ini), set this parameter to 1. To do ShortOpenLoad compensation using a

user-generated compensation file (cvCAL.ini), set this parameter to 2.

Example

doRetest = 1

doComp = 1

status = hvcv_test(pin1, -1, -1, pin2, -1, -1, "open", "CompNone", doComp,

doRetest, 1e5, 0.0, Cp, Gp, D, ICurr)

Makes a single-point C-V measurement.

Also see

hvcv_comp (on page 4-13)

hvcv_measure (on page 4-21)

hvcv_test_basic (on page 4-32)

Section 4: HVLib command reference Keithley Test Environment (KTE) Programmer's Manual

4-32 S500-901-01 Rev. B / January 2019

hvcv_test_basic

This command makes a high-voltage capacitance-voltage (C-V) measurement at a single frequency.

Models supported

S540

Usage

int hvcv_test(int high_pin1, int high_pin2, int high_pin3, int low_pin1, int low_pin2,

int low_pin3, double Freq, double biasV, double *Cp, double *Gp, double *D, double

*iCurr)

high_pin1 Input First pin to connect to high-voltage capacitance meter (CMTR) high
side

high_pin2 Input Second pin to connect to high-voltage CMTR high side

high_pin3 Input Third pin to connect to high-voltage CMTR high side

low_pin1 Input First pin to connect to high-voltage CMTR low side

low_pin2 Input Second pin to connect to high-voltage CMTR low side

low_pin3 Input Third pin to connect to high-voltage CMTR low side

Freq Input Frequency (1e3 to 3e6)

biasV Input Voltage bias

Cp Output Compensated capacitance value

Gp Output Compensated conductance value

D Output Compensated dissipation factor

iCurr Output Leakage current at the biasV voltage

Details

This command does the following:

Verifies input conditions and checks pins

Makes connections to CMTR2

Forces biasV

Measures Cp and Gp by calling the hvcv_measure command

This command returns a status:

1 = Success

–1 = No valid pins

–4 = Frequency is out of valid range (1e3 to 3e6)

–5 = Error with PrChuck

–7 = Low-voltage pin is used for high-voltage test

Keithley Test Environment (KTE) Programmer's Manual Section 4: HVLib command reference

S500-901-01 Rev. B / January 2019 4-33

Example

status = hvcv_test(pin1, -1, -1, pin2, -1, -1, 1e5, 0.0, Cp, Gp, D, ICurr)

Makes a single-point C-V measurement.

Also see

hvcv_measure (on page 4-21)

hvcv_test (on page 4-29)

In this section:

Introduction .. 5-1
multi_site_clear_mapping() .. 5-1
multi_site_mapping() .. 5-3

Introduction

The KI_MultiSite user library (usrlib) is included with every Model S535 system for dual-site

support. This user library manages the dual-site conpin mirroring using the site_mapping LPTLib

function. The following topics describe the commands in this user library.

The commands in this library are only supported for the S535 Wafer Acceptance Test System.

For information about the LPTLib commands you can use for multisite testing, see the LPTLib

command reference (on page 2-1). For more information about dual-site testing, see the S535

Reference Manual (part number S535-901-01).

multi_site_clear_mapping()

This function clears all dual-site mappings from SITE0 to SITE1.

Models supported

S535

Usage

void multi_site_clear_mapping(void);

Details

Use this function to avoid MX_ILLSITE errors with the conpin command when completely remapping

site information.

Call this command after the first call to the devint command.

Section 5

KI_MultiSite command reference

Section 5: KI_MultiSite command reference Keithley Test Environment (KTE) Programmer's Manual

5-2 S500-901-01 Rev. B / January 2019

Example

/* Arrays are defined in a global data file as: */

/* 1,2,3 - PinArray0 */

/* 4,5,6 - PinArray1 */

/* 1,2,3 - PinArray1a */

/* 4,5,6 - PinArray0a */

/* Map SITE0 sites. */

site_mapping(0, PinArray0, 3)

/* Map SITE1 site. */

site_mapping(1, PinArray1, 3)

conpin(SMU1,1, 0)

conpin(SMU2,2, 0)

conpin(SMU5,3, 0)

delay(1000)

/* Reset active instruments to default state and clear all site mappings. */

devint()

multi_site_clear_mapping()

/* Set up new site mappings. */

site_mapping(0, PinArray0a, 3)

site_mapping(1, PinArray1a, 3)

conpin(SMU1,1, 0)

conpin(SMU2,2, 0)

conpin(SMU5,3, 0)

delay(1000)

This example maps dual sites and connects dual pins, then completely changes the dual-site mappings and

connects the pins. The multi_site_clear_mapping() command is called before setting up the new site

mappings.

Keithley Test Environment (KTE) Programmer's Manual Section 5: KI_MultiSite command reference

S500-901-01 Rev. B / January 2019 5-3

multi_site_mapping()

This function calls the site_mapping() LPTLib command for both SITE0 anchor pins and SITE1 mirror pins to

facilitate switching between different probe card and wafer layouts in dual-site mode.

Models supported

S535

Usage

multi_site_mapping();

Details

For easy switching between different probe card and wafer layouts during dual-site operation, add the

multi_site_mapping() command to the UAP_CASSETTE_LOAD user access point (UAP).

If you have multiple pin mappings per cassette, you must update the mapping in the global data file

(*.gdf) and then manually call the multi_site_mapping() function each time the mapping has

changed.

If you are using the Keithley Test Execution Engine (KTXE), you do not need to call this command

again after you have added it to the UAP_CASSETTE_LOAD UAP.

If you are using the Keithley Interactive Test Tool (KITT), you must use the multi_site_mapping()

command before calling any multisite conpin commands.

When defining pin mappings for dual-site operation, you must append _site1 to the variable names

of the mirror-site pins in the global data file (.gdf). If a pin is not defined in the global data file, the

Keithley Test Environment (KTE) will not close a dual pin. If you do not want to use the

KI_MultiSite library, you can manually generate the pin mapping and call the site_mapping

LPTLib command directly.

If you have a chuck connected in an S535 system that is in dual-site mode, the pin the chuck is on

cannot be mirrored.

Section 5: KI_MultiSite command reference Keithley Test Environment (KTE) Programmer's Manual

5-4 S500-901-01 Rev. B / January 2019

Example

/* Global data file variables: */

source 2

sense 8

gate 3,4,6

source_site1 5

sense_site1 9

gate_site1 18,19,21

/* KULT code: */

conpin(SMU1, 2, 0);

/* The conpin command also connects the mirrored SMU to pin 5.*/

conpin(SMU2, 3, 4, 5, 0):

/* The conpin command also connects the mirrored SMU to pins 18, 19, 21.*/

In this section:

Introduction .. 6-1

Introduction

The prober and prober driver commands are described in detail in this section.

Not all commands are supported by all probers. Refer to the documentation for your prober or

contact your field service engineer (FSE) for information about prober compatibility.

PrAbsMove

This command tells the prober to move an absolute number of millimeters relative to the wafer origin.

Usage

status = PrAbsMove(double x_value, double Y_value);

x_value
The number of millimeters to move along the x-axis relative to the wafer

origin

y_value
The number of millimeters to move along the y-axis relative to the wafer

origin

Details

The PrRelMove command, by contrast, tells the prober to move a relative number of millimeters

relative to the present position.

Section 6

Prober and prober driver command reference

Section 6: Prober and prober driver command reference Keithley Test Environment (KTE) Programmer's Manual

6-2 S500-901-01 Rev. B / January 2019

PrAdjustZHeight

This command tells the prober to move the Z-stage (chuck surface) a relative number of units (as defined on the

prober) up/contact (+) or down/separate (–).

Usage

status = PrAdjustZHeight(double z_height);

z_height The number of units to move the chuck from its current position; a valid Z

height is defined for each prober

Details

None

PrAutoAlign

This command automatically aligns the prober based on the optical pattern specified during the wafer setup on

the prober.

Usage

status = PrAutoAlign();

Details

Before using this command, an auto alignment must be stored on the prober.

The KTXE execution engine only runs this command if the PrCheckOptions command has a return

value that indicates that the prober has all the features and options required for this command to
execute.

PrCassetteMap

This command returns a map of the slot status for the specified cassette to an integer array.

Usage

status = PrCassetteMap (int cassette_number, int *cassette_map);

cassette_number The cassette from which to return the map of the slot status; valid values are 1 to
PROBER_n_MAX_CASSETTE

cassette_map An array representing the status of slots in the cassette; 0 to PROBER_n_MAX_SLOT
- 1

Keithley Test Environment (KTE) Programmer's Manual Section 6: Prober and prober driver command reference

S500-901-01 Rev. B / January 2019 6-3

Details

The cassette_number parameter identifies the cassette (in a single or multi-cassette prober) for

which a map will be returned. The value of the cassette_number parameter ranges from 1 to

PROBER_n_MAX_CASSETTE. PROBER_n_MAX_CASSETTE is a constant in the

KIDAT/prbcnfg_XXXX.dat file that represents the total number of cassettes contained in the

prober. This file may also be referenced by its environmental variable, KI_PRB_CONFIG. The n in

PROBER_n_MAX_CASSETTE is substituted by the test station number in the actual file.

The cassette_map array is a map of the slot statuses of the cassette. The size of the array, which

corresponds to the number of slots in the cassette, is given by the constant, PROBER_n_MAX_SLOT;

this constant is in the KIDAT/prbcnfg_XXXX.dat file. The array is indexed from 0 to

(PROBER_n_MAX_SLOT – 1). Each element of the array represents a single slot and is assigned one

of the statuses listed below. Each status has a corresponding constant integral value; these values

may be in the prb.h file:

PR_SLOT_STATUS_UNMAPPED
PR_SLOT_STATUS_IN PROCESS
PR_SLOT_STATUS_EMPTY
PR_SLOT_STATUS_UNPROBED
PR_SLOT_STATUS_PROBED
PR_SLOT_STATUS_PROBLEM
PR_SLOT_STATUS_UNSCHEDULED
DEFAULT_SLOT_STATUS

The KTXE execution engine only runs this command if the PrCheckOptions command has a return

value that indicates that the prober has all the features and options required for this command to
execute.

PrCassetteMask

This command allows you to select which slots in the specified cassette are available for probing. This command

must be used with the PrSetSlotStatus command.

Usage

status = PrCassetteMask (int cassette);

cassette The number of millimeters to move along the x-axis relative to the wafer origin

Details

This command is only valid on P8XL model probers.

A series of calls to the PrSetSlotStatus command are followed by a call to the

PrCassetteMask command. This specifies which wafers on the prober are probed.

Section 6: Prober and prober driver command reference Keithley Test Environment (KTE) Programmer's Manual

6-4 S500-901-01 Rev. B / January 2019

PrCheckOptions

This command returns which optional features are present on the prober.

Usage

status = PrCheckOptions(int *OcrPresent, int *AutoAlnPresent, int *ProfilerPresent, int

*HotchuckPresent, int *HandlerPresent, int *Probe2PadPresent);

OcrPresent The status of the OCR subsystem:

1 = OCR present

0 = No OCR

AutoAlnPresent The status of the autoalign subsystem:
1 = Autoalign enabled

0 = Autoalign disabled

ProfilerPresent The status of the profiler subsytem:
1 = Profiler present and enabled

0 = Profiler disabled

HotchuckPresent The status hot chuck:

1 = Hot chuck present

0 = Option disabled or not installed

HandlerPresent The status of the random access handler:
1 = Random access system present

0 = Random access system disabled

Probe2PadPresent The status of the automatic probe-to-pad system:
1 = Probe-to-pad enabled

0 = Probe-to-pad disabled

Details

The KTXE execution engine uses this command.

PrChuck

This command raises or lowers the chuck.

Usage

status = PrChuck(int chuck_position);

chuck_position The position to move the chuck to:
PR_CHUCK_DOWN = Lower chuck

PR_CHUCK_UP = Raise chuck

Details

The KTXE execution engine uses this command.

Keithley Test Environment (KTE) Programmer's Manual Section 6: Prober and prober driver command reference

S500-901-01 Rev. B / January 2019 6-5

PrClearAll

This command returns all wafers to the cassette and terminates the lot.

Usage

status = PrClearAll();

Details

This command is valid only with a prober equipped with SMIF technology.

PrClearPipeline

This command clears the pipeline of all wafers.

Usage

status = PrClearPipeline();

Details

This command unloads all wafers on the quick-loader and realigner and returns them to their
respective slots in their cassettes of origin.

PrError

This command obtains information about a prober error.

Usage

status = PrError();

Details

This command returns an encoded prober error number that must be decoded before it can be
compared with the numbers listed in the error documentation for your prober. Look up the encoded
error number in the documentation supplied by the prober manufacturer.

The decoding equation is as follows:

prober manufacturer’s error number = –(return value + 1500)

The number returned may be an error number or a return status code.

The KTXE execution engine uses this command.

Section 6: Prober and prober driver command reference Keithley Test Environment (KTE) Programmer's Manual

6-6 S500-901-01 Rev. B / January 2019

PrGetNxtWafer

This command loads the next unprobed wafer from the specified cassette to the chuck.

Usage

status = PrGetNxtWafer(int cassette_number);

cassette_number The number of the source cassette from which to load a wafer

Details

The cassette_number parameter specifies a particular source cassette. The value of the cassette

number can be from 1 to a defined constant. The constant is defined in the file pointed to by

KI_PRB_CONFIG (PROBER_n_MAX_CASSETTE, where n = test station number). See the example in

the KIDAT/prbcnfg_XXXX.dat file.

If a wafer is presently on the chuck, it is unloaded to its origin slot and cassette. When called as a
function, this command returns the slot number of the chosen wafer. If there are no unprobed wafers
in the specified cassette, the command generates an error message and number.

PrGetProduct

This command instructs the prober to return the currently loaded product file.

Usage

status = PrGetProduct(char *file_name);

file_name Variable containing the product file name currently loaded on the prober (pointer to

char array)

Details

This command is not used by the KTXE execution engine.

Keithley Test Environment (KTE) Programmer's Manual Section 6: Prober and prober driver command reference

S500-901-01 Rev. B / January 2019 6-7

PrGetWafer

This command loads a wafer from the specified cassette and slot to the chuck.

Usage

status = PrGetWafer(int cassette_number, int slot_number);

cassette_number The cassette containing the wafer to load

slot_number The location of the wafer to load

Details

This command loads a wafer from a specified source cassette. The value of the cassette number can

be from 1 to a defined constant. The constant is defined in the file pointed to by KI_PRB_CONFIG

(PROBER_n_MAX_CASSETTE, where n = test station number). See the example in the

KIDAT/prbcnfg_XXXX.dat file.

If a wafer is presently on the chuck, it is unloaded to its original slot and cassette.

The parameters for this command are integers.

PrInit

This command initializes the prober with the following information: Probing mode, die size, first coordinates, and

units.

Usage

status = PrInit(int mode, double x_die_size, double y_die_size, int x_start_coordinate,

int y_start_coordinate, int units, int sub_type);

mode The probing mode to use:
PR_MODE_MANUAL
PR_MODE_EXTERNAL
PR_MODE_EDGE

x_die_size A double floating-point value defining the X dimension of the die

y_die_size A double floating-point value defining the Y dimension of the die

x_start_coordinate The X coordinate for prober alignment

y_start_coordinate The Y coordinate for prober alignment

units The unit of measure for numerical data:

PR_ENGLISH = Use Imperial units of measure

PR_METRIC = Use metric units of measure

sub_type This deprecated parameter is always set to 0; it is included here for

compatibility with older systems

Section 6: Prober and prober driver command reference Keithley Test Environment (KTE) Programmer's Manual

6-8 S500-901-01 Rev. B / January 2019

Details

The KTXE execution engine uses this command.

The selected probing mode must support the specific prober model you have. The mode options are

defined in the prb.h file.

The x_die_size and y_die_size parameters define the dimensions of the die. The values

entered for these parameters depend on the units chosen to represent the data. The units selected

(millimeters or mils) are specified in the units parameter.

The x_start_coordinate and y_start_coordinate parameters assign the X and Y

coordinates to the location of the prober at alignment. This assignment defines the origin of the
coordinate system for the wafer, providing a point of reference from which other locations may be
identified.

The argument options for the units parameter are defined in the prb.h file.

PrLoad

This command unloads the wafer currently on the chuck and loads, profiles, and aligns the next wafer to be

tested.

Usage

status = PrLoad();

Details

The KTXE execution engine uses this command.

PrLoadProduct

This command instructs the prober to load a product file from the specified drive.

Usage

status = PrLoadProduct (char *file_name, char *drive_name);

file_name An array that contains the name of the product file to be loaded

drive_name The location in memory that contains the drive from which to load the product file

Details

The drive_name parameter points to the location in memory that contains the identifying letter of the

drive from which to load the product file. Use NULL for the value of this parameter to specify the

default drive (usually a hard drive).

TEL P8 probers do not use the drive_name parameter; the external interface of the prober does

not allow you to select a drive.

Keithley Test Environment (KTE) Programmer's Manual Section 6: Prober and prober driver command reference

S500-901-01 Rev. B / January 2019 6-9

The KTXE execution engine only runs this command if the PrCheckOptions command has a return

value that indicates that the prober has all the features and options required for this command to
execute.

PrLowerBoat

This command lowers the indexer and maps the specified cassette.

Usage

status = PrLowerBoat(int i_pod_number);

i_pod_number The number of the cassette to map

Details

This command is valid only with a prober equipped with SMIF technology.

PrMove

This command tells the prober to move to the specified x, y location when the prober is running in external mode.

Usage

status = PrMove(int x_location, int y_location, int ink_number);

x_location The X location of the die to which the prober should move after inking the present
die

y_location The Y location of the die to which the prober should move after inking the present
die

ink_number The inker to fire

Details

The KTXE execution engine uses this command.

PrNeedleClean

This command directs the prober to clean the needles on the probe card using internal prober cleaning methods.

Usage

status = PrNeedleClean(int clean_function);

clean_function The cleaning method to use:
PR_CLEAN_NONE = Do not perform needle cleaning

PR_CLEAN_BRUSH = Use prober brush

PR_CLEAN_FIBER = Use prober fiber pad

PR_CLEAN_CERAMIC = Use ceramic pad

PR_CLEAN_METAL =Use metal pad

PR_CLEAN_STICKY = Use sticky pad

PR_CLEAN_BLOW = Use air to clean

PR_CLEAN_GENERIC = Other unspecified cleaning station

Section 6: Prober and prober driver command reference Keithley Test Environment (KTE) Programmer's Manual

6-10 S500-901-01 Rev. B / January 2019

Details

Each prober supports different needle cleaning types; the availability of each cleaning function is

determined by the specific prober.

Dependencies: PRBCOM

PrProfile

This command forces the profiling of a wafer.

Usage

status = PrProfile();

Details

The KTXE execution engine only runs this command if the PrCheckOptions command has a return

value that indicates that the prober has all the features and options required for this command to

execute.

PrPutNxtSlot

This command unloads the wafer presently on the chuck, puts it in the next empty slot of the specified cassette,

and loads the next specified wafer onto the chuck for testing.

Usage

status = PrPutNxtSlot(int cassette_number, int reason_code);

cassette_number The destination cassette

reason_code The reason for unloading the wafer:
PR_NORMAL_UNLOAD
PR_PROFILE_FAIL
PR_ALIGN_FAIL

The cassette number can be from 1 to a defined constant. The constant is defined in the file pointed

to by KI_PRB_CONFIG (PROBER_n_MAX_CASSETTE where n = test station number). See the

example in the KIDAT/prbcnfg_XXXX.dat file.

When called as a function, the return value for a successful execution of this command corresponds

to one of two possible constants that are defined in the prb.h file, shown in the following table.

Constants Meaning

PR_WAFERCOMPLETE New wafers successfully loaded

PR_CASSETTECOMPLETE End of lot, no more wafers

If unsuccessful, the return value corresponds to a specific error number; <0

means various errors.

Keithley Test Environment (KTE) Programmer's Manual Section 6: Prober and prober driver command reference

S500-901-01 Rev. B / January 2019 6-11

If no slots are available in the specified cassette when this command is called as a function, it returns
an error message and number. If successful, it returns the number of the destination slot. The
parameters are integers.

PrPutWafer

This command unloads the wafer presently on the chuck to the specified cassette and slot.

Usage

status = PrPutWafer(int cassette_number, int slot_number, int reason_code);

cassette_number The destination cassette

slot_number The slot in the destination cassette to place the wafer

reason_code The reason for unloading the wafer:
PR_NORMAL_UNLOAD
PR_PROFILE_FAIL
PR_ALIGN_FAIL

Details

If the specified slot is unavailable, this command returns an error message and number. The

parameters are integers.

The value of the cassette number can be from 1 to a defined constant. The constant is defined in the

file pointed to by KI_PRB_CONFIG (PROBER_n_MAX_CASSETTE where n = test station number). See

the example in the KIDAT/prbcnfg_XXXX.dat file.

Each reason code has a corresponding numerical code which is defined in the prb.h file. The

parameters are integers.

The KTXE execution engine only runs this command if the PrCheckOptions command has a return

value that indicates that the prober has all the features and options required for this command to

execute.

PrQueryChuckTemp

Queries chuck temperature

Usage

status = PrQueryChuckTemp (double *chuck_temp);

chuck_temp The memory location in which to place the temperature of the chuck

Section 6: Prober and prober driver command reference Keithley Test Environment (KTE) Programmer's Manual

6-12 S500-901-01 Rev. B / January 2019

PrQueryZHeight

This command returns the current Z-stage chuck height in units defined on the prober.

Usage

status = PrQueryZHeight(double *z_height);

z_height The present height of the Z-stage chuck

Details

None

PrReadId

This command reads wafer ID information from the prober and places it in an 80-character user buffer.

Usage

status = PrReadId(char *user_buf);

user_buf The name of the buffer

Details

The only parameter used with this command is the name of an 80-character buffer that contains the

string returned from the prober by the prober request wafer ID command.

If ID is not entered in the prober, a null string is returned. Otherwise the length of the null terminated

ID and its pointer is returned.

The KTXE execution engine only runs this command if the PrCheckOptions command has a return

value that indicates that the prober has all the features and options required for this command to

execute.

PrRelMove

This command moves the prober a specified amount within a single site relative to its existing position in the site.

Usage

status = PrRelMove(double x_value, double y_value);

x_value The number of millimeters or mils to move for the X position

y_value The number of millimeters or mils to move for the Y position

Keithley Test Environment (KTE) Programmer's Manual Section 6: Prober and prober driver command reference

S500-901-01 Rev. B / January 2019 6-13

Details

This command moves the prober a specified number of millimeters or mils in the X and Y directions
on the present site relative to the present location of the probe pins. This command is used for
intrasite prober moves.

The KTXE execution engine uses this command, but the command will not execute if the

microprobing utilities of the prober are being used to perform the subsite probing.

PrRelReturn

This command returns the prober to the location it occupied before any subsite moves were executed.

Usage

status = PrRelReturn();

Details

After any number of PrRelMove commands, the PrRelReturn command must be executed before

the prober can be moved to another site.

The KTXE execution engine uses this command.

PrSerialPoll

This command does a serial poll of the prober GPIB interface.

Usage

status = PrSerialPoll();

Details

This command is available but not used by the KTXE execution engine.

PrSetChuckTemp

This command sets the temperature of the chuck.

Usage

status = PrSetChuckTemp(double chuck_temp);

chuck_temp The temperature to set, in °C

Details

Also see PrQueryChuckTemp (on page 6-11).

Section 6: Prober and prober driver command reference Keithley Test Environment (KTE) Programmer's Manual

6-14 S500-901-01 Rev. B / January 2019

PrSetDiam

This command provides the wafer diameter to the prober.

Usage

status = PrSetDiam(int diameter);

diameter The diameter of the wafer; expressed as an integer number of millimeters or inches

PrSetDieSize

This command sets the X, Y die size of a wafer.

Usage

status = PrSetDieSize(double x_die_size, double y_die_size);

x_die_size The size of the die in relationship to the X coordinate; expressed in millimeters or
mils

y_die_size The size of the die in relationship to the Y coordinate; expressed in millimeters or
mils

PrSetFlat

This command tells the prober in which direction to place the flat of the wafer.

Usage

status = PrSetFlat(int flat_number);

flat_number The integer number direction of the flat PrSetMode

The integral values for the flat_number parameter are defined in the KI_KULT_PATH XXXX.h file

(where XXXX is the abbreviation for your prober model).

PrSetMode

This command changes the probing mode from the one set with the PrInit command.

Usage

status = PrSetMode(int mode);

mode The probing mode to use:

1 = PR_MODE_MANUAL

2 = PR_MODE_EXTERNAL

3 = PR_MODE_EDGE

Details

None

Keithley Test Environment (KTE) Programmer's Manual Section 6: Prober and prober driver command reference

S500-901-01 Rev. B / January 2019 6-15

PrSetPipeline

This command enables and disables pipelining on the prober.

Usage

status = PrSetPipeline(int on_off);

on_off The state in which to set pipelining on the prober:

PR_ENABLE_PIPELINE = Enable pipelining

PR_DISABLE_PIPELINE = Disable pipelining

Details

PR_ENABLE_PIPELINE and PR_DISABLE_PIPELINE are constants defined in the prb.h file.

Pipelining is a technique used to speed up the probing process. When enabled, the prober prepares
the next wafer to be loaded on the chuck. For example:

The wafer is taken from the cassette and placed on the pre-aligner (the pre-aligner finds the flat/notch
and orients the wafer correctly). Once pre-aligned, the prober places the wafer on the quick loader
(the wafer on the quick loader is the next wafer probed after the wafer presently on the chuck is
unloaded). This is how the second and subsequent wafers are "pipelined."

The first wafer goes directly to the chuck.

Also see PrClearPipeline (on page 6-5).

PrSetQuadrant

This command sets the directions in which X and Y coordinates will increase.

Usage

status = PrSetQuadrant(int quad_number);

quad_number The value direction in which to move the X, Y coordinates; an integral value

between 1 and 4

Details

The quad_number parameter is expressed as an integral value between 1 and 4, inclusive, where

each value represents a unique directions-of-increase arrangement for the X, Y axes.

PrSetRefDie

This command assigns an X, Y coordinate to the target or reference die of the prober.

Usage

status = PrSetRefDie(int x_start_position, int y_start_position);

x_start_position The X coordinate to assign to the initial reference die (integer)

y_start_position The Y coordinate to assign to the initial reference die (integer)

Section 6: Prober and prober driver command reference Keithley Test Environment (KTE) Programmer's Manual

6-16 S500-901-01 Rev. B / January 2019

PrSetSlotStatus

This command programs the cassette map of the prober to probe a specified slot, skip a slot, or mark the slot as

unprobed.

Usage

status = PrSetSlotStatus(int Cassette, int Slot, int StatusCode);

Cassette The cassette number of the map to change

Slot The number of the slot to change

StatusCode The status of the slot:

PR_SLOT_PROBED (1)

PR_SLOT_UNPROBED (2)

PR_SLOT_SKIPPED (3)

Details

The cassette size is from 1 to a defined constant. The constant is defined in the file pointed to by

KI_PRB_CONFIG (PROB_n_MAX_CASSETTE, where n = test station number). See the example in the

KIDAT/prbcnfg_XXXX.dat file.

The array size for the Slot parameter is from 1 to a defined constant. The constant is defined in the

file pointed to by KI_PRB_CONFIG (PROBER_n_MAX_SLOT, where n = test station number). See the

example in the KIDAT/prbcnfg_XXXX.dat file.

The StatusCode parameter is the value that the status of the slot changes to after the

PrSlotStatus command. One of the following values is passed to this parameter:

PR_SLOT_PROBED indicates that the wafer in the slot has already been probed

PR_SLOT_UNPROBED indicates that the wafer in the slot is designated to be probed but has not

yet been probed

PR_SLOT_SKIPPED indicates that the wafer in the slot will not be probed

This command informs the prober whether a particular slot is to be probed, skipped, or marked as
unprobed. In general, only unprobed slots will be tested.

The following is a list of the statuses to which a slot may have been set during the execution of the

PrCassetteMap command; these constants are defined in the prb.h file.

Constants set in the PrCassetteMap command:

DEFAULT_SLOT_STATUS

PR_SLOTSTATUS_UNMAPPED

PR_SLOTSTATUS_INPROCESS

PR_SLOTSTATUS_EMPTY

PR_SLOTSTATUS_UNPROBED

PR_SLOTSTATUS_PROBED

Keithley Test Environment (KTE) Programmer's Manual Section 6: Prober and prober driver command reference

S500-901-01 Rev. B / January 2019 6-17

PR_SLOTSTATUS_PROBLEM

PR_SLOTSTATUS_UNSCHEDULED

PrSetTime

This command changes the system default timeout value for prober commands.

Usage

status = PrSetTime(int new_time);

new_time The new timeout value, in seconds

Details

The timeout value represents the integral number of seconds the prober will be given to respond to

commands before the system returns a timeout error.

This command changes the system default timeout value of 120 seconds on prober commands. The

system will use this new value until the timeout is again changed by another PrSetTime command.

Timeout errors occur when the prober takes longer than the default timeout value to respond to

commands.

PrSetUnits

This command sets the prober to metric or Imperial units of measure.

Usage

status = PrSetUnits(int Units);

units The unit of measure for numerical data:

PR_ENGLISH = Use Imperial units of measure

PR_METRIC = Use metric units of measure

Details

None

PrSetZHeight

This command tells the prober to set the present Z-stage chuck height as the new contact position.

Usage

status = PrSetZHeight();

Details

Constants associated with this command are defined in the prb.h file for your system.

Section 6: Prober and prober driver command reference Keithley Test Environment (KTE) Programmer's Manual

6-18 S500-901-01 Rev. B / January 2019

PrSmifClamp

This command causes the SMIF (FOUP) pod to be engaged (clamped) or disengaged (unclamped).

Usage

status = PrSmifClamp(int i_pod_number, int i_clamp_state);

i_pod_number The pod to change to the specified state

i_clamp_state The state in which to set the pod:
SMIF_CLAMP_STATUS_UNLATCH = Unclamp

SMIF_CLAMP_STATUS_LATCH = Clamp

Details

The SMIF_CLAMP_STATUS_UNLATCH and SMIF_CLAMP_STATUS_LATCH constants are defined in

the prb.h file.

A clamped cassette cannot be removed from the indexer. An unclamped cassette can be removed

from the indexer.

This command is valid only with a prober equipped with SMIF technology.

PrSmifLock

This command causes the SMIF (FOUP) pod to be engaged (locked) or disengaged (unlocked).

Usage

status = PrSmifLock(int i_pod_number, int i_lock_state);

i_pod_number The pod to lock or unlock

i_lock_state The state in which to set the pod:

SMIF_LATCH_STATUS_UNLATCH = Unlocked SMIF_LATCH_STATUS_LATCH =

Locked

Details

The SMIF_LATCH_STATUS_UNLATCH and SMIF_LATCH_STATUS_LATCH constants are defined in

the prb.h file.

If locked, the cassette cannot be lowered; if unlocked, the cassette can be lowered.

This command is valid only with a prober equipped with SMIF technology.

Keithley Test Environment (KTE) Programmer's Manual Section 6: Prober and prober driver command reference

S500-901-01 Rev. B / January 2019 6-19

PrSmifStatus

This command returns the operator mode, latch and lock status, cassette home status, pod present status, and

clamp status.

Usage

status = int PrSmifStatus(int i_pod_number, int *i_status_array, int

i_status_array_size);

i_pod_number The pod for which to return information

i_status_array The name of the array in which the information is placed

i_status_array_size The size of the array defined by MAX_SMIF_STATUS_ITEMS

Parameters

The i_status_array parameter represents an array that contains information about the status of

the pod and prober. Following is a list of constants that represent data entries to this array; the names
of constants meaningfully convey the prober features and their corresponding statuses:

SMIF_OPER_MODE_OFFSET

SMIF_OPER_MODE_OFFSET (operator mode)

SMIF_NORMAL_OPER_MODE

SMIF_GEM_OPER_MODE

SMIF_EXTERNAL_OPER_MODE

SMIF_SORTLINK_OPER_MOD

SMIF_LATCH_STATUS_OFFSET

SMIF_LATCH_STATUS_OFFSET (latch and lock status)

SMIF_LATCH_STATUS_UNKNOWN

SMIF_LATCH_STATUS_UNLATCH

SMIF_CASS_HOME_OFFSET

SMIF_CASS_HOME_OFFSET (indexer position)

SMIF_CASSETTE_HOME

SMIF_POD_PRESENT_OFFSET

SMIF_CLAMP_STATUS_OFFSET

SMIF_POD_PRESENT_OFFSET (pod status)

SMIF_CASSETTE_PRESENT

SMIF_CLAMP_STATUS_OFFSET (clamp status)

Section 6: Prober and prober driver command reference Keithley Test Environment (KTE) Programmer's Manual

6-20 S500-901-01 Rev. B / January 2019

SMIF_CLAMP_STATUS_UNCLAMPED

SMIF_CLAMP_STATUS_CLAMPED

Details

This command is valid only with a prober equipped with SMIF technology.

The term "clamp" is defined as the availability of the pod to be removed from the indexer. If clamped,
the pod may not be removed.

The terms "lock" and "latch" are used interchangeably, and are defined as the availability of the
cassette or indexer to be lowered or mapped. If locked or latched, the cassette may not be mapped.

PrStart

This command starts the prober.

Usage

status = PrStart();

PrStatus

This command gets status information about the following prober features: Ready-for-probing, prober location in

relationship to the wafer, chuck position, and probing mode.

Usage

status = PrStatus (int *ready, int *x_location, int *y_location,

int *chuck_position, int *prober_mode);

ready The status of the chuck:

1 = The chuck is up and touching the prober pins are touching the wafer

0 = The chuck and prober pins are not in the ready position

x_location The X coordinate of the present probe site

y_location The Y coordinate of the present probe site

chuck_position The position of the chuck:

1 = The chuck is up

0 = The chuck is down

prober_mode The prober mode of operation:

PR_MODE_MANUAL = Manual mode

PR_MODE_EXTERNAL = External mode

PR_MODE_EDGE = Edge mode

Details

The x_location and y_location parameters specify the xy-coordinates of the present probe site.

These coordinates are given with respect to the coordinate system that was established by setting the

target die coordinates using the PrInit command.

The PR_MODE_MANUAL, PR_MODE_EXTERNAL, and PR_MODE_EDGE constants are defined in the

prb.h file.

Keithley Test Environment (KTE) Programmer's Manual Section 6: Prober and prober driver command reference

S500-901-01 Rev. B / January 2019 6-21

Some probers do not support all prober modes. Refer to the documentation for your prober for

modes supported by your prober.

PrStop

This command stops the prober.

Usage

status = PrStop();

PrUnLoad

This command forces the wafer presently on the chuck to unload to its original cassette and slot.

Usage

status = PrUnLoad();

Details

This command is not used by the KTXE execution engine.

PrWriteRead

This command is for use with serial probers only; see the PrWriteReadSRQ (on page 6-22)

command for GPIB probers.

This command allows you to create a string command and define the response of the serial prober to the newly

created command.

Usage

status = PrWriteRead (char *input_buf, int input_buf_len, char *output_buf, int

output_buf, int terminator, int terminator_cnt);

input_buf A pointer to an array whose content is a string representing the user-created
command; the string’s maximum length is 80 characters

input_buf_len An integer that represents the actual number of characters in the name of the
newly-defined command

output_buf A pointer to an array that contains a string representing the response of the prober

to the newly created command found in the input_buf parameter

output_buf_len An integer that defines the maximum length of the output buffer; use to avoid
overflowing the user output buffer

terminator The ASCII values of the characters used to terminate the input_buf file

terminator_cnt The number of terminators that will be used to terminate the input_buf name

Section 6: Prober and prober driver command reference Keithley Test Environment (KTE) Programmer's Manual

6-22 S500-901-01 Rev. B / January 2019

Details

Prober responses must be chosen from a list of available prober functions, provided in the
documentation for your prober.

The value of the terminator_cnt parameter is defined by the constant NUM_TERMINATORS in the

header file for your model of prober (for example, KI_KULT_PATH PrXXXX.h)

When using this command, you must know which low-level commands are available for your model of
prober and whether or not a reply is expected from the prober. Refer to the documentation for your
prober for information on compatible low-level prober commands.

PrWriteReadSRQ

This command is for use with GPIB probers only; see the PrWriteRead (on page 6-21) command for

serial probers.

This command allows you to create a string command and define the response of the GPIB prober to the newly

created command.

Usage

status = PrWriteReadSRQ (char *input_buf, int input_buf_len, char *output_buf, int

output_buf_len, int timeout, int *i_srq);

input_buf A pointer to an array whose content is a string representing the user-created
command; the string’s maximum length is 80 characters

input_buf_len An integer that represents the actual number of characters in the name of the
newly-defined command

output_buf A pointer to an array that contains a string representing the response of the prober

to the newly created command found in the input_buf parameter

output_buf_len An integer that defines the maximum length of the output buffer; use to avoid
overflowing the user output buffer

timeout The number of seconds the PrWriteReadSRQ function should wait for a prober

response before timing out

i_srq A pointer to the SRQ bit; the value is the SRQ byte received from the prober
(integer)

Keithley Test Environment (KTE) Programmer's Manual Section 6: Prober and prober driver command reference

S500-901-01 Rev. B / January 2019 6-23

Details

Zero and positive integer values returned for the i_srq parameter indicate OK. Values less than (but

not equal to) zero indicate errors. Use the return value from the function to indicate the status of the
command (success or failure). For example:

x=PrWriteReadSRQ(...);

if (x==PR_OK);

/* all is well */

•

•

•

/* look at the i_srq integer */

•

•

•

else;

/* generate error message to the user */

•

•

•

The prober responses must be chosen from a list of available prober functions, provided in the
documentation for your prober.

This command automatically polls for an SRQ.

When using this command, determine which low-level commands are available on the prober and
whether or not a reply is expected from the prober. Refer to the documentation for your prober for
information on compatible low-level prober commands.

Lower-level functions use the string length values to determine if a read or a write will be performed. If
a string length is less than or equal to zero, the associated action is not performed. Also, the

lower-level functions use the i_srq parameter value to determine whether or not to serial poll. If

the i_srq parameter value is a decimal value greater than or equal to 64, a serial poll is performed.

If the i_srq parameter value is a positive value greater than 0 but less than 64, a serial poll is not

performed. Because of this:

Set the output_buf_len parameter to 0 if you are sending a command to the prober without

returning a response in the output_buf parameter (if you want to write but not read).

Set the input_buf_len parameter to 0 if you are returning a response from the prober without

sending the command line contained in the input_buf parameter to the prober (if you want to

read but not write).

Initialize the integer pointed to by the i_srq parameter to a decimal value greater than or equal to 64

if you are returning an SRQ from the prober.

Initialize the integer pointed to by the i_srq parameter to a decimal value equal to 0 if you are

returning an SRQ from the prober. Combinations of the string length values may also be used
because each action is independent. For example:

Set the output_buf_len and input_buf_len parameters to a value greater than 0, and if the

i_srq parameter is greater than or equal to 64, the prober will write to the bus, poll until an SRQ of

greater than or equal to 64 (or timeout) is received, and then read from the bus.

Section 6: Prober and prober driver command reference Keithley Test Environment (KTE) Programmer's Manual

6-24 S500-901-01 Rev. B / January 2019

PrZParams

This command sets one of the following height (Z-axis) parameters for the prober: Overtravel, clearance, up limit,

down limit, or align height.

Usage

status = PrZParams(int function, int value);

function The Z-axis parameter to set:
PR_Z_TRAVEL = Overtravel

PR_Z_CLEARANCE = Clearance

PR_Z_LIMIT = Z up limit

PR_Z_DOWN_LIMIT = Z down limit

PR_Z_ALIGN_HEIGHT = Z align height

value An integer that is the value of the Z-mode selected by the first parameter function

Details

The constants for the function parameter are defined in the prb.h file.

PrZTravel

This command sets the Z travel mode from the tester.

Usage

status = PrZTravel(int number);

number The type of travel used for Z motion, as limited by edge sensor, profiler, or
limit-to-limit setting:

PR_Z_LIMIT_MODE = Enables limits mode (limit-to-limit: Z up and Z down)

PR_Z_EDGE_MODE = Enables the edge sensor

PR_Z_PROFILE_MODE = Enables the Z stage to be guided by the profiler

Details

Refer to KI_KULT_PATH/PrXXXX.h for definitions of the number parameter constants.

In this section:

Overview .. 7-1
Data logging routines ... 7-1
Update comment routines .. 7-15
Update limits routines ... 7-16
Structure handling routines .. 7-17

Overview

The Keithley Data Files (KDF) library is a set of routines to organize and save parametric test data

into simple ASCII data files.

This section contains detailed information about the commands in the Keithley data files (KDF) library.

The command descriptions are organized into the following categories:

Data logging routines (on page 7-1)

Update comment routines (on page 7-15)

Update limits routines (on page 7-16)

Structure handling routines (on page 7-17)

For additional information about using KDF, see "Software" in the reference manual for your system.

Section 7

Keithley data files (KDF) library command reference

Section 7: Keithley data files (KDF) library command reference Keithley Test Environment (KTE) Programmer's Manual

7-2 S500-901-01 Rev. B / January 2019

Data logging routines

Descriptions of the data logging routines are in the following topics.

PutLot

This routine will log the header information to the DB or FF. Lotadd is used to either append (Lotadd =

APPENDLOT), create new (Lotadd = CREATELOT), or to replace an existing lot (Lotadd = CREATELOT). Opens

a file, writes to it, and then closes it.

Usage

Status = PutLot(*LotStruct, Lotadd)

LOT *LotStruct The lot where data is logged

int Lotadd Can be set to either CREATELOT or APPENDLOT; determines what will happen if a

lot file already exists

Details

You cannot use the * or the ? characters in the Lot structure fields because they are the wildcard

characters. Use of these characters will result in an error.

The Lot ID will be used as the lot filename, with the .kdf extension added.

PutLot logs all the data up to and including the <EOH> marker.

If a lot file already exists, it will be renamed from a .kdf extension to a .kd% extension.

Example

strcpy (testlot->id, "test1");

strcpy (testlot->testname, "Voltage 1");

GetStartTime(testlot->starttime);

/* Start the logging of the new lot "test1". The lot has 3 wafers and 10

sites to be logged.

*/

status = PutLot(testlot, CREATELOT);

if (status < 0)

return(status);

Full code can be found in sample program 1.

Keithley Test Environment (KTE) Programmer's Manual Section 7: Keithley data files (KDF) library command reference

S500-901-01 Rev. B / January 2019 7-3

PutWafer

This routine will log the information in the Wafer Structure to the DB or FF for a specific instance of a lot. Opens a

file, writes to it, and then closes it. Must be followed at some point by EndWafer.

Usage

Status = PutWafer(*LotStruct, *WafStruct)

LOT *LotStruct The lot where data is logged

WAFER *WafStruct The wafer to log to the lot

Details

After a call to PutWafer, you must make a call to EndWafer before calling PutWafer again.

You cannot use the * or the ? characters in the wafer structure fields because they are the wildcard

characters. Use of these characters will result in an error.

Example

for (waferloop = 1;waferloop <= 3;waferloop++)

{

sprintf(testwafer->id,"%i",waferloop);

status = PutWafer(testlot,testwafer);

if (status < 0)

return(status);

Full code can be found in sample program 1.

PutSite

This routine will log the information contained in the Site Structure to the DB or FF for a specific instance of a lot

and wafer. Opens a file, writes to it, and then leaves it open for parameter data. Must be followed at some point by

an EndSite.

Usage

status = PutSite(*LotStruct, *WafStruct, *SiteStruct)

LOT *LotStruct The lot where data is logged

WAFER *WafStruct The wafer to log to the lot

SITE *SiteStruct The site to log to the lot

Details

After a call to PutSite, you must make a call to EndSite before calling PutSite again.

You cannot use the * or the ? characters in the site structure fields because they are the wildcard

characters. Use of these characters will result in an error.

Section 7: Keithley data files (KDF) library command reference Keithley Test Environment (KTE) Programmer's Manual

7-4 S500-901-01 Rev. B / January 2019

Example

for (siteloop = 1; siteloop <= 10; siteloop++)

{

sprintf(testsite->id,"%i",siteloop);

status = PutSite(testlot,testwafer,testsite);

if (status < 0)

return(status);

Full code can be found in sample program 1.

PutParam

This routine will log the information in the Param Structure to the DB or FF for a specific instance of a lot, wafer,

and site. Writes to the already open file.

Usage

Status = PutParam(*LotStruct, *WafStruct, *SiteStruct,*ParamStruct)

LOT *LotStruct The lot where data is logged

WAFER *WafStruct The wafer to log to the lot

SITE *SiteStruct The site to log to the lot

PARAM *ParamStruct The parameter to log to the lot

Details

You cannot use the * or the ? characters in the ParamStructure fields because they are the

wildcard characters. Use of these characters will result in an error.

EndSite should be called after the last parameter for the current site is logged.

Example

strcpy(testparam->id, "beta1");

/* calculate the beta*/

testparam->value = beta1(1, 4, 7, -1, 0.5e-3, 2.0, ’N’);

status = PutParam(testlot,testwafer,testsite,testparam);

if (status < 0)

return(status);

Full code can be found in sample program 1.

Keithley Test Environment (KTE) Programmer's Manual Section 7: Keithley data files (KDF) library command reference

S500-901-01 Rev. B / January 2019 7-5

PutParamList

This routine will log a list of param Structures to the DB or FF for a specific instance of a lot, wafer, and site. The

next pointer set to NULL will signify the end of the list to be logged.

Usage

Status = PutParamList(*LotStruct, *WafStruct, *SiteStruct, *Param)

LOT *LotStruct The lot where data is logged

WAFER *WafStruct The wafer to log to the lot

SITE *SiteStruct The site to log to the lot

PARAM *ParamStruct The linked list of parameters to log to the lot

Details

PutParamList makes a series of calls to PutParam as it traverses the linked list, so it has the same

rules as PutParam.

After calling PutParamList, remember to free up the memory from the list (use a while loop with

RemoveParam).

Example

testparam=CreateNewParam();

strcpy(testparam->id, "Volts 1e-2");

/* voltagetest is an example test routine that would return a voltage */

testparam->value = voltagetest(1e-2);

new=CreateNewParam();

strcpy(new->id, "Volts 1e-1");

/* voltagetest is an example test routine that would return a voltage */

testparam->value = voltagetest(1e-1);

/* Add current into the list following testparam */

AddNewParam(testparam,new);

testparam = FindNextParam(testparam);

new = CreateNewParam();

strcpy(new->id, "Volts 1");

/* voltagetest is an example test routine that would return a voltage */

testparam->value = voltagetest(1);

/* Add current into the list following testparam */

AddNewParam(testparam,new);

/* Go to the first param in the list to get ready for PutParamList */

testparam=FindFirstParam(testparam);

PutParamList(testlot,testwafer,testsite,testparam);

Full code can be found in sample program 2.

Section 7: Keithley data files (KDF) library command reference Keithley Test Environment (KTE) Programmer's Manual

7-6 S500-901-01 Rev. B / January 2019

EndLot

This routine ends the logging of the current lot. It must be called before another lot can be logged.

Usage

status = EndLot()

Details

EndLot must be called before PutLot can be called again, otherwise an error is generated.

The end of the lot is signified by the end of the lot file.

EndWafer

This routine ends the logging of the current wafer. It must be called after a call to PutWafer.

Usage

status = EndWafer()

Details

EndWafer must be called before PutWafer can be called again, otherwise an error is generated.

EndWafer writes the <EOW> marker to the file.

EndSite

This routine ends the logging of the current site. It must be called after a call to PutSite.

Usage

status = EndSite()

Details

EndSite must be called before PutSite can be called again, otherwise an error is generated.

EndSite writes the <EOS> marker to the file.

Keithley Test Environment (KTE) Programmer's Manual Section 7: Keithley data files (KDF) library command reference

S500-901-01 Rev. B / January 2019 7-7

GetLot

This routine returns a NULL terminated list of lots, starting with LotStructGot, that match the criteria specified

in LotStructWanted. The LotStructGot pointer should already point to a structure when the routine is called

(for example, LotStructGot = CreateNewLot). Wildcards are supported in the wanted structure. Wildcards

cannot be entered in the integer fields (a value of zero in an integer position is the same as *).

Usage

Status = GetLot(*LotStructWanted,*LotStructGot)

LOT *LotStructWanted Lot structure containing the information on the lot to be retrieved. It can be
very general (using wildcards) or very specific

LOT *LotStructGot Lot structure to which the found data is returned. It must be an allocated

structure when it is sent to GetLot

Details

The Lot ID is the only required field.

Using wildcards may cause a noticeable decrease in performance in a directory with many files.

If the status returned is greater than or equal to zero, then it is the number of lots found. If it is less

than zero, it is an error code.

Example

gotlot = CreateNewLot();

strcpy(testlot->id, "test1");

/* Retrieve all the data that was just logged */

GetLot(testlot, gotlot);

Full code can be found in sample program 1.

Section 7: Keithley data files (KDF) library command reference Keithley Test Environment (KTE) Programmer's Manual

7-8 S500-901-01 Rev. B / January 2019

GetWafer

This routine returns a NULL terminated list of wafers, starting with WaferStructGot, that match the criteria

specified in WafStructWanted for the specific (single) LotStruct. Wildcards are supported in the wanted

structure. The WafStructGot pointer should already point to a structure when the routine is called (for example,

WafStructGot = CreateNewWafer). Wildcards are not supported for the integer fields (a value of zero in an

integer position is the same as *). If an empty (NULL) wanted structure is passed in, the routine will return all

wafers in the specified lot.

Usage

Status = GetWafer(*LotStruct, *WafStructWanted,*WaferStructGot)

LOT *LotStruct The specific lot in which the wafer should be found

WAFER

*WaferStructWanted

Wafer structure containing the information on the wafer to be retrieved. It can
be very general (using wildcards) or very specific

WAFER *WaferStructGot Wafer structure to which the found data is returned. It must be an allocated

structure when it is sent to GetWafer

Details

If the status returned is greater than or equal to zero, then it is the number of wafers found. If it is less
than zero, it is an error code. The wanted structure must contain a valid string or wildcard for the

"id" and "split" string items. A null string in either of these string items will not return a match.

Example

gotwafer = CreateNewWafer();

/* Get all the wafers in the lot */

strcpy(testwafer->id, "*");

GetWafer(gotlot, testwafer, gotwafer);

Full code can be found in sample program 1.

Keithley Test Environment (KTE) Programmer's Manual Section 7: Keithley data files (KDF) library command reference

S500-901-01 Rev. B / January 2019 7-9

GetSite

This routine returns a NULL terminated list of sites, starting with *SiteStructGot, that match the criteria

specified in SiteStructWanted for the specific (single) LotStruct and WafStruct. The SiteStructGot

pointer should already point to a structure when the routine is called (for example, SiteStructGot =

CreateNewSite). Wildcards are supported in the wanted structure. Wildcards are not supported for the integer

fields (a value of zero in an integer position is the same as *).

Usage

Status = GetSite(*LotStruct, *WafStruct, *SiteStructWanted, *SiteStructGot)

LOT *LotStruct The specific lot in which the wafer should be found

WAFER *WaferStruct The specific wafer in which the site should be found

SITE *SiteStructWanted Site structure containing the information on the site to be retrieved. It can be
very general (using wildcards) or very specific

SITE *SiteStructGot Site structure to which the found data is returned. It must be an allocated

structure when it is sent to GetSite

Details

If the status returned is greater than or equal to zero, then it is the number of sites found. If it is less
than zero, it is an error code.

Example

gotsite = CreateNewSite();

/* Get all the sites in this wafer */

strcpy(testsite->id, "*");

GetSite(gotlot, gotwafer, testsite, gotsite);

Full code can be found in sample program 1.

Section 7: Keithley data files (KDF) library command reference Keithley Test Environment (KTE) Programmer's Manual

7-10 S500-901-01 Rev. B / January 2019

GetParam

This routine returns a NULL terminated list of parameters, starting with the *ParamStructGot, that match the

criteria specified in ParamStructWanted for the specific (single) LotStruct, WafStruct, and SiteStruct.

The ParamStructGot pointer should already point to a structure when the routine is called (for example,

ParamStructGot = CreateNewParam). Wildcards are supported in the wanted structure. Wildcards are not

supported for the integer fields (a value of zero in an integer position is the same as *).

Usage

Status = GetParam(*LotStruct, *WafStruct, *SiteStruct, *ParamStructWanted,

*ParamStructGot)

LOT *LotStruct The specific lot in which the wafer should be found

WAFER *WaferStruct The specific wafer in which the site should be found

SITE *SiteStruct The specific site in which the param should be found

PARAM

*ParamStructWanted

Parameter structure containing information on the parameter to be retrieved; it
can be very general (using wildcards) or very specific

PARAM *ParamStructGot Parameter structure to which the found data is returned. It must be an

allocated structure when it is sent to GetParam

Details

If the status returned is greater than or equal to zero, then it is the number of parameters found. If it is
less than zero, it is an error code.

Example

gotparam = CreateNewParam();

/* Get all the parameters in this site */

strcpy(testparam->id, "*");

GetParam(gotlot, gotwafer, gotsite, testparam, gotparam);

Full code can be found in sample program 1.

Keithley Test Environment (KTE) Programmer's Manual Section 7: Keithley data files (KDF) library command reference

S500-901-01 Rev. B / January 2019 7-11

GetParamList

This routine returns a NULL terminated list of parameters to *ParamStruct that are included in the

*ParamStructList list. Wildcards are supported at the parameter level.

Usage

Status = GetParamList(*LotStruct, *WaferStruct, *SiteStruct, *ParamStructList,

*ParamStruct)

LOT *LotStruct The specific lot in which the wafer should be found

WAFER *WaferStruct The specific wafer in which the site should be found

SITE *SiteStruct The specific site in which the param should be found

PARAM

*ParamStructLi

st

List of parameter structures to be retrieved. Each parameter in the list can be very
general (using wildcards) or very specific

PARAM *ParamStruct Head of the list of parameter structures to which the found data is returned. It must

be an allocated structure when it is sent to GetParamList

Details

If the status returned is greater than or equal to zero, then it is the number of parameters found. If it is
less than zero, it is an error code.

GetLotData

This routine returns a tree structure of all the wafers, sites, and parameters in LotWanted. The returned list

begins with the next field of the lot structure sent to the function.

Usage

Status = GetLotData (*LotWanted)

LOT *LotWanted Put the specific lot data that you want to find in this structure and the found lot will

be returned in the LotWanted->next field

Details

The data is returned in LotWanted->next. Then the data follows a tree structure from there.

LotWanted->wafers points to the first wafer in the lot.

LotWanted->wafers->sites points to the first site in the first wafer.

LotWanted->wafers->sites->params points to the first parameter in the first site of the first

wafer.

Wildcards are not supported.

Section 7: Keithley data files (KDF) library command reference Keithley Test Environment (KTE) Programmer's Manual

7-12 S500-901-01 Rev. B / January 2019

Example

gotlot = CreateNewLot();

strcpy(gotlot->id, "test1");

/* Retrieve all the data that was just logged */

GetLotData(gotlot);

Full code can be found in sample program 1.

MatchParam2Limit

This routine takes the list of parameters and matches them to the corresponding limit codes. Each parameter

points to its corresponding limit code and each limit points back to the parameter. If no match is found for a

parameter, the pointer is set to NULL.

Usage

Status = MatchParam2Limit(*ParamList, *LimitList)

PARAM *ParamList List of parameters

LIMIT *LimitList List of limits to match to the above parameters

FileExist

Checks for the existence of a file in the current data directory (where the lot files are being stored). Returns TRUE

(1) if the file is in the directory, FALSE (0) if the file is not in the directory.

Usage

Status = FileExist(filename)

char filename[] Name of the file to find

Details

The present data directory is determined by the value in the kth.ini file after "Datapath=".

LotExist

Checks for the existence of a lot file in the current data directory. Returns TRUE (1) if the lot is in the directory,

FALSE (0) if the lot is not in the directory.

Usage

Status = LotExist(*LotStruct)

LOT *LotStruct The lot structure containing the information to be found

Details

The present data directory is determined by the value in the kth.ini file after "Datapath=".

Keithley Test Environment (KTE) Programmer's Manual Section 7: Keithley data files (KDF) library command reference

S500-901-01 Rev. B / January 2019 7-13

GetStartTime

Returns a time and date string in the format "DD-MM-YYYY hh:mm" where DD=day, MM=month, YYYY=year,

hh=hour, and mm=minutes.

Usage

GetStartTime(timestring)

char timestring[] String to which the current time is returned; must be at least 20 characters

DeleteLot

This routine will delete all lot-associated data for the specified lot structure. All Lots in the NULL terminated linked

list will be deleted. The DeleteLot routine is responsible for ensuring referential integrity.

Usage

Status = DeleteLot(*LotStruct)

LOT *LotStruct The lot or linked list of lots to be deleted

Details

Wildcard deletes are not allowed.

When a lot is deleted, the lot is renamed from the .kdf extension to a .kd% extension.

DeleteWafer

This routine will delete all wafer information for the specified lot and wafer. All wafers for the NULL terminated

linked list wafers will be deleted. Wildcards are not allowed in either structure.

Usage

Status = DeleteWafer(*LotStruct, *WafStruct)

LOT *LotStruct The lot that contains the wafer to be deleted

WAFER *WafStruct The wafer or linked list of wafers to be deleted

Details

Wildcard deletes are not allowed.

When a wafer is deleted, the lot is renamed from the .kdf extension to a .kd% extension.

Section 7: Keithley data files (KDF) library command reference Keithley Test Environment (KTE) Programmer's Manual

7-14 S500-901-01 Rev. B / January 2019

DeleteSite

This routine will delete all site information for the specified lot, wafer, and site. All sites for the NULL terminated

linked list of sites will be deleted. Wildcards are not allowed in any of the structures.

Usage

Status = DeleteSite(*LotStruct, *WafStruct, *SiteStruct)

LOT *LotStruct The lot that contains the wafer to be deleted

WAFER *WafStruct The wafer that contains the site to be deleted

SITE *SiteStruct The site or linked list of sites to be deleted

Details

Wildcard deletes are not allowed.

When a site is deleted, the lot is renamed from the .kdf extension to a .kd% extension.

DeleteParam

This routine will delete the parameter information for the specified lot, wafer, site, and parameter. All parameters

for the NULL terminated linked list of parameters will be deleted. Wildcards are not allowed in any of the

structures.

Usage

Status = DeleteParam(*LotStruct, *WafStruct, *SiteStruct, *ParamStruct)

LOT *LotStruct The lot that contains the wafer to be deleted

WAFER *WafStruct The wafer that contains the site to be deleted

SITE *SiteStruct The site that contains the parameter to be deleted

PARAM *ParamStruct The parameter or linked list of parameters to be deleted

Details

Wildcard deletes are not allowed.

When a parameter is deleted, the lot is renamed from the .kdf extension to a .kd% extension.

Keithley Test Environment (KTE) Programmer's Manual Section 7: Keithley data files (KDF) library command reference

S500-901-01 Rev. B / January 2019 7-15

DeleteLimitCode

This routine is used to delete entire sets of limits defined by a limit code. All limits specified in the NULL

terminated list of limit codes will be deleted.

Usage

Status = DeleteLimitCode(*LimitcodeStruct)

LIMITCODE

*LimitcodeStru

ct

The limit code or linked list of limit codes to be deleted

Details

Wildcard deletes are not allowed.

Limit code information is used to generate the limits filename.

When a limit code is deleted, the lot is renamed from the .klf extension to a .kl% extension.

DeleteLimit

This routine is used to delete limit records from the DB. All limits specified in the NULL terminated list of limits will

be deleted.

Usage

Status = DeleteLimit(*LimitcodeStruct, *LimitStruct)

LIMITCODE

*LimitcodeStru

ct

The limit code containing the limit to be deleted

LIMIT *LimitStruct The limit or linked list of limits to be deleted

Update comment routines

The following topics describe the update comment routines.

GetComment

This routine will fetch the comment from the .kdf file for a specific lot occurrence.

Usage

Status = GetComment(*LotStruct, comment)

LOT *LotStruct The lot to retrieve the comment from

char comment[] The string where the comment is returned

Section 7: Keithley data files (KDF) library command reference Keithley Test Environment (KTE) Programmer's Manual

7-16 S500-901-01 Rev. B / January 2019

PutComment

This routine will overwrite the comment in the .kdf file for a specific lot occurrence.

Usage

Status = PutComment(*LotStruct, comment[])

LOT *LotStruct The lot where the comment is to be changed

char comment[] The string sent to be logged as the new comment

Update limits routines

The following topics describe the update limits routines.

GetLimitCode

This routine will fetch a list of limit codes that match the criteria specified in the wanted structure.

Usage

Status = GetLimitCode(*LimitcodeStructwanted, *LimitcodeStructlist)

LIMITCODE

*LimitcodeStructwa

nted

The limit code information to search for in the logging directory

LIMITCODE

*LimitcodeStructli

st

The returned list of limit codes that were found in the search

Details

Limit code information is used to generate the limits filename.

Wildcards can be used in the *LimitcodeStructwanted structure.

The return value is the number of limit codes found or an error value if it is less than zero.

GetLimit

This routine will fetch a NULL terminated linked list of limit structures with the specified limit code and limit

information. The head of the linked list of limits is returned in both the *LimitStruct and in the

LimitcodeStruct->limits fields.

Usage

Status = GetLimit(*LimitcodeStruct, *LimitStruct)

LIMITCODE

*LimitcodeStruct

The limit code to retrieve the limits from

LIMIT *LimitStruct The returned list of limits that were found in the limit code

Details

Keithley Test Environment (KTE) Programmer's Manual Section 7: Keithley data files (KDF) library command reference

S500-901-01 Rev. B / January 2019 7-17

Limit code information is used to generate the limits filename.

The return value is the number of limits found or an error value if it is less than zero.

PutLimit

This routine will write a list of limits to the DB or FF for the limit code specified. If the limit code already exists, the

new limits will overwrite and append.

Usage

Status = PutLimit(*LimitcodeStruct, *LimitStruct)

LIMITCODE

*LimitcodeStruct

The limit code to log the limits to

LIMIT *LimitStruct The list of limits to log to the limit code

Details

If the limit code already exists, it will be renamed from a .klf extension to a .kl% extension.

Structure handling routines

There is a version of each of the structure handling routines for every structure (LOT, WAFER, SITE,

PARAM, and LIMITCODE). These routines are described in the following topics.

AddNew[STRUCTURE]

This routine adds new to the list following current. There is a version of each of the structure handling routines

for every structure (LOT, WAFER, SITE, PARAM, and LIMITCODE).

Usage

AddNewLimitCode(*current, *new)

AddNewLot(*current, *new)

AddNewWafer(*current, *new)

AddNewSite(*current, *new)

AddNewParam(*current, *new)

LIMITCODE *current Pointer to the current limit code

LOT *current Pointer to the current lot

WAFER *current Pointer to the current wafer

SITE *current Pointer to the current site

PARAM *current Pointer to the current parameter

LIMITCODE *new The new limit code to be added

LOT *new The new lot to be added

WAFER *new The new wafer to be added

SITE *new The new site to be added

PARAM *new The new param to be added

Section 7: Keithley data files (KDF) library command reference Keithley Test Environment (KTE) Programmer's Manual

7-18 S500-901-01 Rev. B / January 2019

Example

LIMITCODE *current, *new;

AddNewLimitCode(current, new);

CreateNew[STRUCTURE]

This routine allocates the memory for and returns a pointer to the new LIMIT CODE, LOT, WAFER, SITE, or

PARAM.

Usage

LimitCodePtr = CreateNewLmtCode()

LotPtr = CreateNewLot()

WaferPtr = CreateNewWafer()

SitePtr = CreateNewSite()

ParamPtr = CreateNewParam()

LIMITCODE

*LimitCodePtr

Pointer to a limit code structure

LOT *LotPtr Pointer to a lot structure

WAFER *WaferPtr Pointer to a wafer structure

SITE *SitePtr Pointer to a site structure

PARAM *ParamPtr Pointer to a parameter structure

Details

This routine must be called before performing operations with LimitCodePtr, LotPtr, WaferPtr,

SitePtr, or ParamPtr.

Example

LIMITCODE *LimitCodePtr;

LimitCodePtr = CreateNewLmtCode();

Keithley Test Environment (KTE) Programmer's Manual Section 7: Keithley data files (KDF) library command reference

S500-901-01 Rev. B / January 2019 7-19

FindFirst[STRUCTURE]

This routine returns the first LIMIT CODE, LOT, WAFER, SITE, or PARAM that current points to in the list.

NULL is returned if current is NULL.

Usage

LimitCodePtr = FindFirstLmtCode(*current)

LotPtr = FindFirstLot(*current)

WaferPtr = FindFirstWafer(*current)

SitePtr = FindFirstSite(*current)

ParamPtr = FindFirstParam(*current)

LIMITCODE

*LimitCodePtr

Pointer to a limit code structure

LOT *LotPtr Pointer to a lot structure

WAFER *WaferPtr Pointer to a wafer structure

SITE *SitePtr Pointer to a site structure

PARAM *ParamPtr Pointer to a parameter structure

LIMITCODE *current Pointer to the current limit code

LOT *current Pointer to the current lot

WAFER *current Pointer to the current wafer

SITE *current Pointer to the current site

PARAM *current Pointer to the current parameter

Example

LIMIT *LimitCodePtr, *current;

LimitCodePtr = FindFirstLmtCode(current);

FindLast[STRUCTURE]

This routine returns the last LIMIT CODE, LOT, WAFER, SITE, or PARAM that current points to in the list. It

returns NULL if current is NULL.

Usage

LimitCodePtr = FindLastLimitCode(*current)

LotPtr = FindLastLot(*current)

WaferPtr = FindLastWafer(*current)

SitePtr = FindLastSite(*current)

ParamPtr = FindLastParam(*current)

LIMITCODE

*LimitCodePtr

Pointer to a limit code structure

LOT *LotPtr Pointer to a lot structure

WAFER *WaferPtr Pointer to a wafer structure

SITE *SitePtr Pointer to a site structure

Section 7: Keithley data files (KDF) library command reference Keithley Test Environment (KTE) Programmer's Manual

7-20 S500-901-01 Rev. B / January 2019

PARAM *ParamPtr Pointer to a parameter structure

LIMITCODE *current Pointer to the current limit code

LOT *current Pointer to the current lot

WAFER *current Pointer to the current wafer

SITE *current Pointer to the current site

PARAM *current Pointer to the current parameter

Example

LIMITCODE *LimitCodePtr, *current;

LimitCodePtr = FindLastLimitCode(current);

FindNext[STRUCTURE]

This routine finds the next LIMIT CODE, LOT, WAFER, SITE, or PARAM after the position that current points to

in the list. NULL is returned if current is at the end of the list.

Usage

LimitCodePtr = FindNextLimitCode(*current)

LotPtr = FindNextLot(*current)

WaferPtr = FindNextWafer(*current)

SitePtr = FindNextSite(*current)

ParamPtr = FindNextParam(*current)

LIMITCODE

*LimitCodePtr

Pointer to a limit code structure

LOT *LotPtr Pointer to a lot structure

WAFER *WaferPtr Pointer to a wafer structure

SITE *SitePtr Pointer to a site structure

PARAM *ParamPtr Pointer to a param structure

LIMITCODE *current Pointer to the current limit code

LOT *current Pointer to the current lot

WAFER *current Pointer to the current wafer

SITE *current Pointer to the current site

PARAM *current Pointer to the current parameter

Example

LIMITCODE *LimitCodePtr, *current;

LimitCodePtr = FindNextLimitCode(current);

Keithley Test Environment (KTE) Programmer's Manual Section 7: Keithley data files (KDF) library command reference

S500-901-01 Rev. B / January 2019 7-21

FindPrev[STRUCTURE]

This routine finds the previous LIMIT CODE, LOT, WAFER, SITE, or PARAM before the position current points

to in the list. NULL is returned if current is at the beginning of the list.

Usage

LimitCodePtr = FindPrevLimitCode(*current)

LotPtr = FindPrevLot(*current)

WaferPtr = FindPrevWafer(*current)

SitePtr = FindPrevSite(*current)

ParamPtr = FindPrevParam(*current)

LIMITCODE

*LimitCodePtr

Pointer to a limit code structure

LOT *LotPtr Pointer to a lot structure

WAFER *WaferPtr Pointer to a wafer structure

SITE *SitePtr Pointer to a site structure

PARAM *ParamPtr Pointer to a param structure

LIMITCODE *current Pointer to the current limit code

LOT *current Pointer to the current lot

WAFER *current Pointer to the current wafer

SITE *current Pointer to the current site

PARAM *current Pointer to the current parameter

Example

LIMITCODE *LimitCodePtr, *current;

LimitCodePtr = FindPrevLimitCode(current);

Section 7: Keithley data files (KDF) library command reference Keithley Test Environment (KTE) Programmer's Manual

7-22 S500-901-01 Rev. B / January 2019

InsertNew[STRUCTURE]

This routine adds new into the LIMIT CODE LOT, WAFER, SITE, or PARAM list before current.

Usage

InsertNewLmtCode(*current, *new)

InsertNewLot(*current, *new)

InsertNewWafer(*current, *new)

InsertNewSite(*current, *new)

InsertNewParam(*current, *new)

LIMITCODE *current Pointer to the current limit code

LOT *current Pointer to the current lot

WAFER *current Pointer to the current wafer

SITE *current Pointer to the current site

PARAM *current Pointer to the current param

LIMITCODE *new The new limit code to be inserted

LOT *new The new lot to be inserted

WAFER *new The new wafer to be inserted

SITE *new The new site to be inserted

PARAM *new The new parameter to be inserted

Example

LIMITCODE *current, *new;

InsertNewLmtCode(current,new);

Keithley Test Environment (KTE) Programmer's Manual Section 7: Keithley data files (KDF) library command reference

S500-901-01 Rev. B / January 2019 7-23

Remove[STRUCTURE]

This routine removes the LIMIT CODE, LOT, WAFER, SITE, or PARAM pointed to by current and returns a

pointer to the next limit code, lot, wafer, site, or parameter in the list. If the next pointer is NULL, the previous limit

code, lot, wafer, site, or parameter is returned. If the previous limit code, lot, wafer, site, or parameter is also

NULL, then NULL is returned.

Usage

LimitCodePtr = RemoveLimitCode(*current)

LotPtr = RemoveLot(*current)

WaferPtr = RemoveWafer(*current)

SitePtr = RemoveSite(*current)

ParamPtr = RemoveParam(*current)

LIMITCODE

*LimitCodePtr

Pointer to a limit code structure

LOT *LotPtr Pointer to a lot structure

WAFER *WaferPtr Pointer to a wafer structure

SITE *SitePtr Pointer to a site structure

PARAM *ParamPtr Pointer to a parameter structure

LIMITCODE *current Pointer to the current limit code

LOT *current Pointer to the current lot

WAFER *current Pointer to the current wafer

SITE *current Pointer to the current site

PARAM *current Pointer to the current parameter

Example

LIMITCODE *LimitCodePtr, *current;

LimitCodePtr = RemoveLimitCode(current);

Section 7: Keithley data files (KDF) library command reference Keithley Test Environment (KTE) Programmer's Manual

7-24 S500-901-01 Rev. B / January 2019

LimitExist

This routine tests for the existence of a limit file in the current Limit File data directory based on the limit code

"limitin." TRUE (1) is returned if the limit files exist, and FALSE (0) is returned otherwise. This routine is only

for the LIMITCODE structure.

Usage

Status = LimitExist(*limitin)

int Status The result value of the call

LIMITCODE *limitin The limit code to search for

Example

int Status;

LIMITCODE *limitin;

Status = LimitExist (limitin);

In this section:

Introduction .. 8-1

Introduction

Zone-based testing is a test method where the sites to be tested are generated at run time. The sites

to be tested are selected randomly from predefined zones, or patterns, contained in the wafer

definition file.

The KTXE_RP user library contains commands you can use at user access points (UAPs) in your

tests. Descriptions of the commands follow.

KTXE_RP_CleanUpWDF

This command renames the randomly generated wafer description file (.wdf) to lot_XXX_wdfname.

Usage

KTXE_RP_CleanUpWDF

Details

This command preserves the .wdf file used in the test for a future adaptive retest. This routine is

used if a lot execution is suspended.

This function should be called at UAP_LOT_END.

KTXE_RP_CreateRandomWDF

This function creates a wafer file based on the maximum frequency and number of wafers.

Usage

KTXE_RP_CreateRandomWDF

Details

The name of the wafer description file is saved in the cpf_info structure. This function uses the

rand_pat utility to generate random patterns. For information on the rand_pat utility, refer to "KTE

support utilities" in the reference manual for your system.

This function should be called at UAP_WRITE_LOT_INFO.

Section 8

KTXE_RP zone-based testing command reference

Section 8: KTXE_RP zone-based testing command reference Keithley Test Environment (KTE) Programmer's Manual

8-2 S500-901-01 Rev. B / January 2019

KTXE_RP_CreateWPF

This function creates a new wafer plan file to use the appropriate probe pattern name.

Usage

KTXE_RP_CreateWPF

Details

The new wafer plan file is created by duplicating the base file and modifying the probe pattern name.

This function should be called at UAP_WAFER_PREPARE.

KTXE_RP_GetUsrArgs

This function checks the command-line arguments used to invoke the Keithley Test Execution Engine (KTXE) to

determine the test mode.

Usage

KTXE_RP_GetUsrArgs

Details

This overrides the global data entry, KTXE_RP_test_mode, if used.

This function should be called at UAP_PROG_ARGS.

KTXE_RP_RemoveWPF

This function deletes wafer patterns that were generated at run time.

Usage

KTXE_RP_RemoveWPF

Details

This function should be called at UAP_WAFER_END.

In this section:

Introduction .. 9-1

Introduction

The Keithley Result-Based Testing User Library (KTXE_AT) contains commands that you can use for

result-based testing. For more information about result-based testing, see the "Result-Based Testing"

topic in the reference manual for your system.

KTXE_AT commands can be used at user access points (UAPs) in your tests. Descriptions of these

commands follow.

KTXE_AT_alternate_site_site_end()

This function is used to determine, at completion of site testing, if an alternate site should be tested.

Usage

KTXE_AT_alternate_site_site_end()

Details

Use at UAP_SITE_END.

KTXE_AT_alternate_site_test_end()

This function is used to determine if any test results failed during the testing of a Keithley test module (KTM).

Usage

KTXE_AT_alternate_site_test_end()

Details

Use this function at UAP_TEST_END.

Section 9

KTXE_AT result-based testing command reference

Section 9: KTXE_AT result-based testing command reference Keithley Test Environment (KTE) Programmer's Manual

9-2 S500-901-01 Rev. B / January 2019

KTXE_AT_AlterWWP()

This function is used to alter the working wafer plan (WWP) list to add all Keithley test modules (KTMs) that have

failed on the current site to be executed at an alternate site.

Usage

int KTXE_AT_AlterWWP(long *current_wwp_list,float altx, alty)

Details

This function is used internally.

KTXE_AT_CheckResWithLimits()

This routine should be called from another routine or from a user access point (UAP) to check the value of a result

with the limits specified in a limit list or a limit sublist.

Usage

int KTXE_AT_CheckResWithLimits(char *Result_Name, double Result_Value, int Limit_Code,

char *Limit_List)

Result_Name Character string specifying the name of the result; the name should exist in the limit
list

Result_Value Double value of the result

Limit_Code An integer value between 1 and 4; the result is checked against Valid, Spec, Ctrl or
Engr limit based on the code

 1 = Check against Valid limit

 2 = Check against Spec limit

 3 = Check against Ctrl limits

 4 = Check against Engr limits

Limit_List The name of the limit list to use for looking up the result; you can pass the default

limit_list or pass in a limit sublist name for this parameter

Return value If the result is within the limits TRUE is returned; if the result is not within the limits,

FALSE is returned

Details

This function is used internally.

This routine can be run at any UAP if the result and the limit list exist in the data pool at that UAP.

This routine can also be called from other routines (for example, KI_SubsiteTest).

This routine returns a TRUE or a FALSE. The return value should be checked after this routine is

called and action should be taken based on the returned value.

To see the errors generated by this macro when running in the Keithley Test Execution (KTXE), set

the KI_KTXE_ERROR_LOG environment variable.

Keithley Test Environment (KTE) Programmer's Manual Section 9: KTXE_AT result-based testing command reference

S500-901-01 Rev. B / January 2019 9-3

KTXE_AT_cleanup_site()

This function is used to reset counts and clean up data structures.

Usage

KTXE_AT_cleanup_site()

Details

This function is used internally.

KTXE_AT_debug_print()

This function is used to print the internal flags and counters used in KTXE_AT.

Usage

KTXE_AT_debug_print()

Details

Use this function at UAP_SITE_END.

KTXE_AT_demo_data_func()

This function generates demo data.

Usage

double KTXE_AT_demo_data_func(double x)

Details

This function is called internally by KTXE_AT_generate_val.

KTXE_AT_enable_kdf()

This function enables Keithley data file (KDF) logging, if previously disabled.

Usage

KTXE_AT_enable_kdf()

Details

Use this function at UAP_TEST_DATA_LOG.

Section 9: KTXE_AT result-based testing command reference Keithley Test Environment (KTE) Programmer's Manual

9-4 S500-901-01 Rev. B / January 2019

KTXE_AT_FindAltSite()

This function is used to find the alternate site coordinates for the current site.

Usage

KTXE_AT_FindAltSite()

Details

This function is used internally.

KTXE_AT_generate_val()

This demo data generation function returns a value for each variable tested based on highV and lowV, which are

upper and lower bounds, and a specified demo_type.

Usage

double KTXE_AT_generate_val(int demo_type, double highV, double lowV)

demo_type The demo type (int); a number from 0 to 12 that defines result failures based on site

location on the wafer

 0 = Random high/low fail

 1 = Inside fails high

 2 = Outside fails high

 3 = Top fails high

 4 = Bottom fails high

 5 = Right fails high

 6 = Left fails high

 7 = Inside fails low

 8 = Outside fails low

 9 = Top fails low

 10 = Bottom fails low

 11 = Right fails low

 12 = Left fails low

highV demo_high_lim = Upper bound of passing results (double)

lowV demo_low_lim = Lower bound of passing results (double)

Result The test result (double)

Details

Call this function from a Keithley test module (KTM) as follows:

result = KTXE_AT_generate_val(demo_type, demo_high_lim, demo_low_lim)

Define demo_type, demo_high_lim, and demo_low_lim as global data for ease of use.

Keithley Test Environment (KTE) Programmer's Manual Section 9: KTXE_AT result-based testing command reference

S500-901-01 Rev. B / January 2019 9-5

KTXE_AT_LogResultList()

This function is used to log saved result lists to a Keithley data file (KDF).

Usage

KTXE_AT_LogResultList(char *result_list_name)

Details

The function is used internally.

KTXE_AT_more_sites_cur_wafer_site_end()

This function is used to determine, at completion of site testing, if more sites should be tested on the present

wafer.

Usage

KTXE_AT_more_sites_cur_wafer_site_end()

Details

Use this function at UAP_SITE_END.

KTXE_AT_more_tests_curr_wafer_site_end()

This function is used to determine, at completion of site testing, if more tests should be executed on the present

wafer.

Usage

KTXE_AT_more_sites_cur_wafer_site_end()

Details

Use this function at UAP_SITE_END.

KTXE_AT_more_tests_curr_wafer_wafer_begin()

This function is used to add results in the alternate test class to the list of results that are disabled during initial

execution.

Usage

KTXE_AT_more_tests_cur_wafer_wafer_begin()

Details

Use this function at UAP_WAFER_BEGIN.

Section 9: KTXE_AT result-based testing command reference Keithley Test Environment (KTE) Programmer's Manual

9-6 S500-901-01 Rev. B / January 2019

KTXE_AT_more_tests_next_wafer_site_end()

This function is used to change wafer plan to be used for the next wafer that has the same wafer plan name as

the current wafer plan.

Usage

KTXE_AT_more_tests_next_wafer_site_end()

Details

Use this function at UAP_SITE_END.

KTXE_AT_wafer_begin()

Library initialization module.

Usage

KTXE_AT_wafer_begin()

Details

Use this function at UAP_WAFER_BEGIN.

In this section:

Introduction .. 10-1

Introduction

The Keithley User Interface (KUI) Library contains commands that provide the program developer

with a basic set of user interfaces for operator data entry and program status monitoring program

specifically for test programs.

Descriptions of the KUI commands follow.

GetProgramArgs

This command gets program command-line arguments.

Usage

void GetProgramArgs(int argc, char *argv[], int *debug, int *err_report_mode, char

**err_log_fname, int *gui_look, LOT **lot, char **sum_report_options, char

**kwf_fname, char *user_arg)

Details

The GetProgramArgs command allows values for specific test program global variables to be

passed in using the command line.

The GetProgramArgs command parses the command-line arguments to match switches assigned

to the test program variables. When a match is found, the GetProgramArgs command will then try

to parse in its argument, converting and bounding it per the variable type, as required.

If an error occurs in interpreting the command-line arguments, the GetProgramArgs command will

print an error message explaining the reason and the allowable command-line arguments to stderr,

and exit the test program.

Section 10

Keithley User Interface Library command reference

Section 10: Keithley User Interface Library command reference Keithley Test Environment (KTE) Programmer's Manual

10-2 S500-901-01 Rev. B / January 2019

The allowable command-line arguments can be displayed by typing -h at the command line following

the test program’s name.

Valid switches are shown in the following table.

Switch Description

-c Text lot information comment field

-d Text lot information device field

-e n [fname] Error reporting mode

Where n = 0 to 3:

 0 - None

 1 - Display Error Messages

 2 - Log Error Messages

 3 - Display and Log Error Messages

[fname] - Error log file path and name

-g n GUI look and feel operation

Where n = 0 to 4:

 0 - Motif

 1 - OpenLook

 2 - Microsoft Windows

-h
 Display command line options

-i
 ID lot information lot id field

-k n text Lot search key

Where n = 1 to 3 fields

-l id Lot information limit ID

-o text Lot information operator field

-p text Lot information process field

-r "options" Lot summary report options

-s text Lot information system field

-t n Test station

Where n = 1 to 4

-w fname Wafer description filename

-u text User argument

-x n
Debug flag

Where n = -32767 to 32768

fname - Valid filename and path

options - Options must be enclosed in quotes

text - Command-line arguments will be concatenated to the switch argument

until the next switch (dash-letter) occurs

Keithley Test Environment (KTE) Programmer's Manual Section 10: Keithley User Interface Library command reference

S500-901-01 Rev. B / January 2019 10-3

Example

/* KI_Strncpy guarantees the member will be xxx_LENGTH & null terminated */

KI_Strncpy(lot->limitcode, "tutorial_limits", LIMITCODE_LENGTH);

KI_Strncpy(lot->id, "tutorial_lot", LOT_ID_LENGTH);

lot->teststation = 1;

GetStartTime(lot->starttime);

if(getenv("USER")!=NULL)

KI_Strncpy(lot->operator, getenv("USER"), LOT_OPERATOR_LENGTH);

if(getenv("HOST")!=NULL)

KI_Strncpy(lot->system, getenv("HOST"), LOT_SYSTEM_LENGTH);

/*>> set default Keithley wafer (description) file name */

kwf_fname = "sample.wdf";

/*>> default lot summary report options */

sum_report_options = "-s";

/*>> set/override program run time values and flags w/ command line args */

GetProgramArgs(argc, argv, &debug, &err_report_mode, &err_log_fname, &gui_look,

&lot, &sum_report_options, &kwf_fname, user_arg);

This example illustrates how test program global variables can be set with default values within the program
and optionally overridden from the command line.

InitUINew

This command initializes the Keithley User Interface (KUI) Library so that dialogs can be displayed and become

operable. It must be called before any dialogs are called. In addition, it allows specifying the look and feel of the

displayed dialogs as provided in the DLG_LOOK_XXXX constants and starts the control thread of execution.

Usage

InitUINew(int look, void *Main ());

Details

The KUI system is now threaded for better response to operator input. As a result, the control thread

process name is specified in the InitUINew command. The look program variable is defined in

kui_proto.h. It is used with the GetProgramArgs command to set the look using the test program

command line.

Section 10: Keithley User Interface Library command reference Keithley Test Environment (KTE) Programmer's Manual

10-4 S500-901-01 Rev. B / January 2019

InputMsgDlg

The InputMsgDlg command displays a modal dialog window containing the passed message string and

provides the user with a text edit widget to enter information into the program.

Usage

int InputMsgDlg(char *msgstr, char *inputstr)

Details

The program remains in the dialog until the user presses one of the buttons. The text edit widget text

is then placed in the inputstr buffer. The dialog then returns either DLG_OK or DLG_EXIT per the

OK or CANCEL buttons. The input string pointer cannot contain a null value. It should point to some

allocated memory space to place the entered string. If you do not want to use the string, pass 0 as

the argument.

LotDlg

This command displays a modal dialog window in order to collect lot information from the operator. It has as

arguments a pointer to a lot structure, a field enable array, and a bound for the maximum test station that can be

selected.

Usage

LotDlg(LOT *lot, char lot_dlg_fields[NUM_LOT_FIELDS], int max_teststation)

Details

Default entries for the lot dialog fields can be passed through this structure prior to calling LotDlg as

follows:

(KI_Strncpy guarantees the member will be xxx_LENGTH and null terminated)

LOT *lot;

KI_Strncpy(lot->limitcode,"tutorial_limits", LIMITCODE_LENGTH);

KI_Strncpy(lot->id, "tutorial_lot", LOT_ID_LENGTH);

lot->teststation = 1;

The lot_dlg_fields array is an array passed to the lot information dialog to indicate the fields that

can be altered by the user. The lot_fields enum corresponds to indexes within that array and

should be used with FIELD_ENABLED and FIELD_DISABLED constants to set array elements before

calling LotDlg as follows:

lot_dlg_fields[SYSTEM_ID] = FIELD_DISABLED;

lot_dlg_fields[TEST_NAME] = FIELD_DISABLED;

LotDlg(lot, lot_dlg_fields, max_teststation);

All fields are enabled by default.

The LotDlg command returns either DLG_OK or DLG_ABORT per the OK and ABORT buttons. If

exited with OK, the dialog fields are updated and returned in the lot structure. The return value can
then be used to determine further program execution.

Keithley Test Environment (KTE) Programmer's Manual Section 10: Keithley User Interface Library command reference

S500-901-01 Rev. B / January 2019 10-5

InitUI must be called before LotDlg.

OkCancelAbortMsgDlg

This command displays a modal dialog window containing the passed message string and requires the user

acknowledge it by pushing either OK or CANCEL before the program can continue.

Usage

int OkCancelAbortMsgDlg(char *msgstr)

Details

The message should be phrased to state the test program can be aborted by pressing CANCEL. If

OK is pressed, the dialog returns DLG_OK. If CANCEL is pressed, the user is then prompted through

another modal dialog to verify aborting the test program. The dialog will then return either

DLG_ABORT if OK was pressed, or DLG_NO if CANCEL was pressed in the verification dialog.

OkCancelMsgDlgDialog

This command displays a modal dialog window containing the passed message string and requires the user

acknowledge it by pushing either OK or CANCEL before the program can continue.

Usage

int OkCancelMsgDlg(char *msgstr)

Details

Returns either DLG_OK or DLG_EXIT.

OkMsgDlg

This command displays a modal dialog window containing the passed message string and requires the user

acknowledge it by pushing OK before the program can continue.

Usage

void OkMsgDlg(char *msgstr)

Details

The OkMsgDlg command does not return a value. It is used to pause the test program and require

the operator to acknowledge the message before the program can continue.

Section 10: Keithley User Interface Library command reference Keithley Test Environment (KTE) Programmer's Manual

10-6 S500-901-01 Rev. B / January 2019

QuitUI

This command removes any remaining displayed dialogs and performs clean-up actions required for using the

dialogs in the User Interface library.

Usage

int QuitUI()

Details

The QuitUI command should be called prior to program exit.

ScrollMsgDlg

This command sets a label of a dialog window.

Usage

void ScrollMsgDlg(char *label)

Details

Messages accumulate and can be scrolled through in the visible area until it is cleared or the QuitUI

command is called. The ScrollMsgDlg command is called with a label to display at the top of the

dialog window.

Refer to UpdateModelessDlgs - Update Modeless dialogs (on page 10-8) and UpdateStatusDlg —

Update Status Dialog (on page 10-8) for issues regarding the responsiveness of the ScrollMsgDlg

command.

ScrollMsgDlgClr

This command is used to clear all messages from the scrolling message dialog.

Usage

void ScrollMsgDlgClr()

Details

The scrolling message dialog will remain displayed and the first message sent will be placed at the
top of the scrolling area.

Keithley Test Environment (KTE) Programmer's Manual Section 10: Keithley User Interface Library command reference

S500-901-01 Rev. B / January 2019 10-7

ScrollMsgDlgMsg

This command is used to post a message to the scrolling message dialog.

Usage

void ScrollMsgDlgMsg(char *msgstr)

Details

The passed string should make use of \n as needed. If the ScrollMsgDlg command was not called

previous to the ScrollMsgDlgMsg command, it will be called from within it, and the dialog label set

as "Test Program Messages." The buffer size is limited by the maxScrollLines variable, which

defaults to ~500 lines. When this buffer size is exceeded, the oldest 2/3 of the buffer is thrown away
and the buffer will continue to grow. The maximum value can be adjusted using the data pool. Refer
to "Data pool" in the reference manual for your system for an example.

StatusDlg

This command provides a modeless dialog window that is displayed from when StatusDlg is first called until

QuitUI releases the user interface on program exit. Besides providing display fields for key test program

variables, it also provides a single text display line on which a program-specific status message can be displayed

as well as a level of program execution control through the PAUSE, CONTINUE, and ABORT buttons.

Usage

void StatusDlg(LOT **lot, WAFER **wafer, SITE **site, SUBSITE **subsite, int

*total_wafers, int *wafers_tested, int *total_sites, int *sites_tested,

kui_support_t **KUI_Support, kui_user_t **KUI_User);

Details

The StatusDlg command was designed in conjunction with guide test program data. In order to

minimize the argument list required for UpdateStatusDlg, StatusDlg establishes pointers to the

test program variables from which the dialog fields will obtain their display information for the
remainder of the test program. The status dialog treats all these variables as read-only. The lot,
wafer, site, and subsite pointers point to structures with members corresponding to status dialog
display fields. Since the addresses passed for these structures also point to the present structure in
their respective linked list, the status dialog automatically tracks and displays the correct information.
The status dialog is called as follows:

StatusDlg(&lot, &wafer, &site, &subsite,

&total_wafers, &wafers_tested,

&total_sites, &sites_tested,

&KUI_Support, &KUI_User);

The status dialog contains a Total Time field. This field displays a running timer indicating elapsed
time for test plan execution. Two user fields are also available for custom use.

There is a pointer to the KUI_User structure in the data pool. Populating this structure will enable or

disable the user fields. These fields must be initialized at UAP_LOT_INFO or earlier for proper

operation. Once the fields are initialized, changing the values and calling the

KTXEUpdateStatusAbort() command will cause an immediate update. If the user fields are left

uninitialized, they will not be present on the Status dialog window.

Section 10: Keithley User Interface Library command reference Keithley Test Environment (KTE) Programmer's Manual

10-8 S500-901-01 Rev. B / January 2019

The following figure shows a sample status dialog window.

Figure 18: Status dialog window

UpdateModelessDlgs

This command is used to update and display the scroll message dialog when their contents change.

Usage

void UpdateModelessDlgs()

UpdateStatusDlg

This command is provided to update and display the status dialog fields when their contents change in the test

program, as well as pass a status message appropriate for that point in the program.

Usage

int UpdateStatusDlg(char *user_msg)

Details

Although the status dialog remains displayed throughout the test program, even while other dialogs

are displayed, the fields are only updated and buttons checked when UpdateStatusDlg is called as

in the following example:

UpdateStatusDlg("Loading Wafer ... ");

Keithley Test Environment (KTE) Programmer's Manual Section 10: Keithley User Interface Library command reference

S500-901-01 Rev. B / January 2019 10-9

When UpdateStatusDlg is called, it first checks for differences between the test program variables

and their display fields, updating them if necessary. The status message is then placed in its field.
The PAUSE, CONTINUE, and ABORT buttons are then checked.

The pause-continue-abort pca_flag reflects the state of program execution (by default, it is set to

KI_CONTINUE). When the status dialog buttons are checked by UpdateStatusDlg, if a button is

pressed, it will set the flag appropriately.

Just before the UpdateStatusDlg command returns, it checks the pca_flag. If paused, the test

program will remain within the UpdateStatusDlg call until either CONTINUE or ABORT is pressed.

The pca_flag will be set appropriately and allow the function to return with either DLG_OK or

DLG_ABORT, respectively. The return value can be used to determine further program execution.

The responsiveness of updating the status dialog and the PAUSE, CONTINUE, and ABORT buttons

is directly a result of where and how often UpdateStatusDlg appears in the test program. For

example, if a number of tests that require significant time appear in the test program, it may be

necessary to intersperse UpdateStatusDlg between them.

The InitUI command must be called before the StatusDlg command. The UpdateStatusDlg

command may appear in the test program before the StatusDlg command, but will be ignored as

the status dialog pointers and the window itself have not been established.

VarMsgDlg

This command creates a window with a scrolling text region and multiple push buttons. In addition, each push

button has a user-defined label.

Usage

int VarMsgDlg(*VarMsgDlgDataPtr) ;

Details

This routine is passed a structure containing configuration data for the window. The structure
definition is shown below:

typedef struct _VarMsgDlgData

{

int no_buttons;

int no_lines;

char **button_labels;

char *win_label;

char *ted_string;

}

VarMsgDlgDataRec, *VarMsgDlgDataPtr;

no_buttons: The number of pushbuttons displayed. There is no limit to the number of buttons,

but screen space and size will impose a practical limit.

no_lines: How many lines of text will be displayed in the scrolling region.

button_labels: An array of text for labels.

Section 10: Keithley User Interface Library command reference Keithley Test Environment (KTE) Programmer's Manual

10-10 S500-901-01 Rev. B / January 2019

win_label: The text used for the title bar on the window.

ted_string: The message to be displayed in the scrolling window.

This command will return the index number of the button that was pressed by the user. The first
button is index 0.

There is an example program located in the distribution showing sample Keithley User Interface (KUI)

Library calls and their uses. This file is located in $KIHOME/src/gui_template.c.

The following figure shows an example of a dialog window created using this routine.

Figure 19: Variable message window

WfrIdsDlgDialog

This window is not supported in the KTE Integrated Display Service (KIDS) graphical user interface

(GUI). The standard Keithley User Interface (KUI) Classic window will be used.

This command displays a modal dialog window in order to collect information from the operator for multiple wafers

to be tested by the test program. It facilitates automated testing as the wafer id will not have to be prompted as

each wafer is tested.

Usage

int WfrIdsDlg(WAFER **wafer_ptr, int max_cassette, int *total_ptr)

Details

The WfrIdsDlg command has as arguments a pointer to a wafer structure pointer, a bound for the

highest cassette that can be selected, and a pointer to the variable that will contain the total number
of wafers to be tested.

The multiple wafer information dialog allows you to enter from 1 to max_cassette lists of wafer IDs

and split entries corresponding to 25 slots on each cassette. While the dialog is displayed, you can
switch between cassettes and can enter IDs in any order. A split entry can only be made if the slot
has a corresponding ID entry.

Keithley Test Environment (KTE) Programmer's Manual Section 10: Keithley User Interface Library command reference

S500-901-01 Rev. B / January 2019 10-11

The WfrIdsDlg command is passed a pointer to the test program’s present WAFER structure

pointer. A pointer to the pointer is required to allow the WfrIdsDlg command to modify the test

program’s present WAFER structure pointer that is passed in and return a different pointer value.

For example, the wafer structure pointer may point to NULL when the WfrIdsDlg command is

called, but points to an allocated wafer structure in the wafer linked list upon return.

As you enter wafer information, the WfrIdsDlg command will allocate elements and maintain a

linked list of wafer structures. When you exit the multiple wafer information dialog, the entered wafers
will be in cassette-slot order in the linked list. The test program variable pointed to will contain the
number of wafers in the linked list.

The WfrIdsDlg command returns either DLG_OK or DLG_ABORT per the OK and ABORT buttons.

The return value can then be used to determine further program execution.

In most cases, the pointer to the wafer structure pointer will point to NULL when the dialog is called
as the number of wafers, their position and IDs will most likely be determined at program run time.
The default entries for the ID and Split fields will be empty. However, the ability to pass in a pointer to
an established linked list of wafers is reserved for possible future development. It is intended for
possible use to accommodate situations where wafer IDs might remain the same from test run to test
run, such as program development, where generic wafer IDs are suitable, or for validation or editing
of IDs obtained through some other means such as optical character recognition or bar coding.

For this reason, the linked list of wafers passed to the dialog will reflect changes even if the dialog is
exited with ABORT as no tracking of which wafers were passed in will be maintained by the dialog.

The multiple wafer information dialog is called as in the following example:

WfrIdsDlg(&wafer, max_cassette, &total_wafers);

The InitUI command must be called before the WfrIdsDlg command.

WfrIdDlg

This window is not supported in the KTE Integrated Display Service (KIDS) graphical user interface

(GUI). The standard Keithley User Interface (KUI) Classic window will be used.

This command displays a modal dialog window in order to collect information from the operator for single wafers

to be tested by the test program. It is intended primarily for situations where an operator is prompted to enter

information on a wafer-by-wafer basis, such as when manual wafer loading occurs. It has as arguments a pointer

to a wafer structure pointer, and a bound for the highest cassette which can be selected.

Usage

int WfrIdDlg(WAFER **wafer_ptr, int max_cassette)

Section 10: Keithley User Interface Library command reference Keithley Test Environment (KTE) Programmer's Manual

10-12 S500-901-01 Rev. B / January 2019

Details

The single wafer information dialog allows you to enter the cassette number bounded from 1 to

max_cassette, the slot from 1 to 25, the wafer ID and split information. A split entry can only be

made if the slot has an ID entry.

A pointer to a WAFER structure pointer is passed to the WfrIdDlg command. A pointer to the

pointer is used only to maintain similar arguments and reduce confusion with the multiple wafer

information dialog WfrIdsDlg command, which requires a pointer to a pointer. The passed pointer

value will not be modified by the WfrIdDlg command.

Unlike the multiple wafer information dialog, WfrIdsDlg, the single wafer information dialog will not

allocate a wafer structure if needed within the dialog call and expects to be passed a pointer to one.

Since it is passed a pointer to an allocated wafer structure, the dialog fields can be initialized based
on the values of the members of the passed structure.

If you exit the dialog with OK, the structure members are updated with the dialog field entries and the

WfrIdDlg returns DLG_OK. If ABORT is used to exit the dialog, the structure members are not

updated and DLG_ABORT is returned. The return value can then be used to determine further

program execution.

The single wafer information dialog is called as in the following example, which allocates a wafer
structure and initializes the fields based on the present entry in the wafer linked list, and adds it to the
existing wafer linked list if the dialog is exited with OK:

next_wafer = CreateNewWafer();

KI_Strncpy(next_wafer->split, wafer->split, WAFER_SPLIT_LENGTH);

next_wafer->boat = wafer->boat;

next_wafer->slot = wafer->slot;

if(next_wafer->slot < MAX_SLOT)

next_wafer->slot++;

switch(WfrIdDlg(&next_wafer, max_cassette))

{

case DLG_ABORT:

EXIT_PRGM

case DLG_OK:

AddNewWafer(wafer, next_wafer);

wafer = next_wafer;

wafers_tested++;

total_wafers++;

The InitUI command must be called before the WfrIdDlg command.

Keithley Test Environment (KTE) Programmer's Manual Section 10: Keithley User Interface Library command reference

S500-901-01 Rev. B / January 2019 10-13

YesNoAbortMsgDlg

This command displays a modal dialog window containing the passed message string and requires the user

acknowledge it by pushing either YES, NO, or ABORT before the program can continue.

Usage

int YesNoAbortMsgDlg(char *msgstr)

Details

The message should be phrased to state the test program can be aborted by pressing ABORT. If

YES is pressed, the dialog returns DLG_YES. If NO is pressed, the dialog returns DLG_NO. If ABORT

is pressed, you are then prompted through another modal dialog to verify aborting the test program.

The dialog will then return either DLG_ABORT if OK was pressed, or DLG_NO if CANCEL was pressed

in the verification dialog.

YesNoCancelMsgDlg

This command displays a modal dialog window containing the passed message string and requires the user

acknowledge it by pushing either YES, NO, or CANCEL before the program can continue.

Usage

int YesNoCancelMsgDlg(char *msgstr)

Details

Returns either DLG_YES, DLG_NO, or DLG_EXIT.

ContSkipAbortDlg

This command displays a message in a dialog box with the Continue, Skip, and Abort choices.

Usage

int ContSkipAbortDlg (char *msg)

Details

Continue returns DLG_YES, Skip returns DLG_SKIP, and Abort returns DLG_ABORT.

Section 10: Keithley User Interface Library command reference Keithley Test Environment (KTE) Programmer's Manual

10-14 S500-901-01 Rev. B / January 2019

LBoxDlg

This window is not supported in the KTE Integrated Display Service (KIDS) graphical user interface

(GUI). The standard Keithley User Interface (KUI) Classic window will be used.

This command opens a window containing a list of items and allows selection of one or more of these items.

Usage

int LBoxDlg(char *text_label, char *windowTitle, LBOXDLG_ListPtr **listPtr, int

MultipleSelectionEnabled) ;

Details

text_label = Text label over list of items

windowTitle = Title text for window frame

listPtr = Pointer to a linked list of LBOXDLG_ListPtr items

typedef struct _lboxDlg

{

char *label ;

int selected ;

struct _lboxDlg *next ;

} LBOXDLG_ListPtr ;

MultipleSelectionEnabled = Single or Multiple Selection flag. Possible values:

LBOXDLG_SINGLE_SELECT or LBOXDLG_MULTI_SELECT.

Return values:

DLG_OK = OK button pressed

DLG_EXIT = Cancel button pressed

DLG_ABORT = Abort button pressed

In addition, the listPtr list of items has been modified to reflect any selection changes. These

changes only take effect if the OK button is pressed. Pressing the CANCEL or ABORT buttons leaves
the list in its original state.

Keithley Test Environment (KTE) Programmer's Manual Section 10: Keithley User Interface Library command reference

S500-901-01 Rev. B / January 2019 10-15

Example

int retVal, i ;

LBOXDLG_ListPtr *lboxList, *new, *last ;

/* Create a list of items to display

 */

new = (LBOXDLG_ListPtr *)malloc(sizeof(LBOXDLG_ListPtr)) ;

new->label = strdup("Item 1") ;

new->selected = 1 ;

new->next = NULL ;

last = lboxList = new ;

for (i = 2 ; i < 10 ; i++)

{

 char label[64] ;

 sprintf(label, "Item %d", i) ;

 new = (LBOXDLG_ListPtr *)malloc(sizeof(LBOXDLG_ListPtr)) ;

 new->label = strdup(label) ;

 new->selected = 0 ;

 new->next = NULL ;

 last->next = new ;

 last = new ;

}

/* Show list and get selection. (Single select mode)

 */

retVal = LBoxDlg("Test lbox text",

"Lbox Title",

&lboxList,

LBOXDLG_SINGLE_SELECT) ;

/* free the list. Display the data while we are here

 */

while(lboxList != NULL)

{

 LBOXDLG_ListPtr *tmp ;

 if (1 == lboxList->selected)

printf("%s was selected!\n", lboxList->label) ;

 free(lboxList->label) ;

 tmp = lboxList->next ;

 free(lboxList) ;

 lboxList = tmp ;

}

In this section:

Introduction .. 11-1

Introduction

The data pool holds global data while the Keithley Test Execution Engine (KTXE) is running. When

KTXE starts, the variables declared in the global data files and probe card file are copied into the data

pool.

The data pool is also used to look up variables for parameters that are passed to KULT-generated

modules when they are run at the UAPs.

Descriptions of the data pool commands follow.

dpAddData

This command adds new non-pointer type data to the data pool.

Usage

int dpAddData(char *name, int type, ...);

name Input Character string containing the name of the data

type Input Non-pointer type of data (INT, FLOAT, LONG, DOUBLE, CHAR)

value Input Absolute data value; the value is interpreted internally based on the

type parameter

Return value Output Returns one of the following statuses:

 OK_dpAdd: The add was successful

 FAILED_dpAdd: There was a problem allocating memory for the

data node; the add was unsuccessful

Section 11

Data pool command reference

Section 11: Data pool command reference Keithley Test Environment (KTE) Programmer's Manual

11-2 S500-901-01 Rev. B / January 2019

Details

If data of the same name already exists in the data pool, the type and the value is overwritten with the
new data.

Examples

status = dpAddData("MyIntData", INT, 10);

status = dpAddData("MyFloatData", FLOAT, 10.11);

dpAddPointer

This function is used to add pointer-type data to the data pool. If data of the same name already exists in the data

pool, the type and the value is overwritten with the new data.

Usage

int dpAddPointer(char *name, int type, void *valuep);

name Input Character string containing the name of the data

type Input Pointer type of data (INT_P, FLOAT_P, LONG_P, DOUBLE_P, CHAR_P)

valuep Input Value pointer; see Details

Return value Output Returns one of the following statuses:

 OK_dpAdd: The add was successful

 FAILED_dpAdd: There was a problem allocating memory for the

data node. The add was unsuccessful

Details

When using a dpAddPointer call, the data value being added to the data pool must be either static

or malloc’d. Do not use automatic pointers.

Example

status = dpAddPointer("MyPointerData", FLOAT_P, floatptr);

Keithley Test Environment (KTE) Programmer's Manual Section 11: Data pool command reference

S500-901-01 Rev. B / January 2019 11-3

dpAddArray

This function is used to add arrays to the data pool. If data of the same name already exists in the data pool, the

type and the value is overwritten with the new data.

Usage

int dpAddArray(char *name, int type, void *valuep, int elements);

name Input Character string containing the name of the data

type Input Array type of data (INT_ARRAY, FLOAT_ARRAY, DOUBLE_ARRAY)

valuep Input Pointer to the first element of the array

elements Number of elements in the array

Return value Output Returns one of the following statuses:

 OK_dpAdd: The add was successful

 FAILED_dpAdd: There was a problem allocating memory for the

data node; the add was unsuccessful

Example

status = dpAddArray("MyArrayData", INT_ARRAY, arrayptr, 10);

*dpGetDataPtr

This function is used to get a pointer to a value of non-pointer type data (for example, INT, FLOAT, DOUBLE, LONG,

CHAR) in the data pool. This function returns a void pointer. It is the user’s responsibility to typecast the value to

the appropriate data type.

Usage

void *dpGetDataPtr(char *name, int type);

name Input Character string containing the name of the data to be extracted from the
data pool

type Input The data type of the variable

Return value Output
 If the data of a specified name and type is found in the data pool,

a void pointer to the value is returned; it is the user's responsibility
to typecast the data to the appropriate data type (for example, int

*, float *, double *, long *, char *)

 If the data is not found in the data pool, NULL is returned

Example

valueptr = (int *)dpGetDataPtr("MyInt Data", INT);

Section 11: Data pool command reference Keithley Test Environment (KTE) Programmer's Manual

11-4 S500-901-01 Rev. B / January 2019

*dpGetPointer

This function is used to get the pointer value of pointer type data (for example, INT_P, FLOAT_P, DOUBLE_P,

LONG_P, CHAR_P) in the data pool. This function returns a void pointer. It is the user’s responsibility to typecast

the value to the appropriate type.

Usage

void *dpGetDataPtr(char *name, int type)

name Input Character string containing the name of the data to be extracted from the
data pool

type Input The data type of the variable

Return value Output
 If the data of a specified name and type is found in the data pool,

a void pointer to the value is returned; it is the user's responsibility

to typecast the data to the appropriate data type (for example, int

*, float *, double *, long *, char *)

 If the data is not found in the data pool, NULL is returned

Example

valueptr = (float *)dpGetPointer("MyPointer Data", FLOAT_P);

*dpGetArrayElement

This function is used to get a specific element of an array from the data pool.

Usage

*dpGetArrayElement(char *arrname, int type, int element)

arrname Input Character string containing the name of the array

type Input The data type of the variable (for example, INT_ARRAY, FLOAT_ARRAY,

DOUBLE_ARRAY)

element Integer value specifying the index of the array

Return value Output Returns a pointer to the specific element in the array.

 If the specified array name is found in the data pool, a void pointer
to the specified element in the array is returned; it is the user’s
responsibility to typecast the data to the appropriate type

NULL is returned in one of the following situations:

 If the array name is not found in the data pool

 If the data requested is not of an array type (for example,

INT_ARRAY, FLOAT_ARRAY, DOUBLE_ARRAY)

 If the element requested is less than 0 or larger than the number
of elements in the array

Example

valueptr = (int *)dpGetArrayElement("MyArray Data", INT_ARRAY, 7);

Keithley Test Environment (KTE) Programmer's Manual Section 11: Data pool command reference

S500-901-01 Rev. B / January 2019 11-5

dpRemoveData

This function is used to remove specific data from the data pool. It will free up the allocated memory for the node

in the data pool and the memory for the value of any of the non-pointer type data (for example, INT, FLOAT, LONG,

DOUBLE, CHAR). The user is responsible for reallocating memory for all of the pointer type data and the arrays.

Do not remove any variables put into the data pool by KTXE. This may cause fatal errors.

Usage

void dpRemoveData(char *name, int type);

name Input Character string containing the name of the data to be removed from the
data pool

type Input The data type of the variable

Details

This function does not return anything.

Examples

dpRemoveData("MyArrayData", INT_ARRAY);

dpRemoveData("MyPointerData", FLOAT_P);

dpPrintData

This function allows the user to print a variable and its value in the data pool by passing the name and type of

data.

All the dpPrint routines print to the location specified in the KI_KTXE_DEBUG_LOG environment

variable. To print to the screen, set this environment variable to "/dev/tty".

Usage

void *dpGetDataPtr(char *name, int type);

name Input Character string containing the name of the data to be printed

type Input The data type of the variable

Section 11: Data pool command reference Keithley Test Environment (KTE) Programmer's Manual

11-6 S500-901-01 Rev. B / January 2019

Details

This function does not return anything.

Example

dpPrintData("MyIntData", INT);

dpPrintAllData

This function allows you to print all the data in the data pool.

All the dpPrint routines print to the location specified in the KI_KTXE_DEBUG_LOG environment

variable. To print to the screen, set this environment variable to "/dev/tty".

Usage

void dpPrintAllData(void)

Details

No parameters are required for this function.

This function does not return anything.

Examples

dpPrintAllData();

*

*dpGetArrayElement • 11-4

*dpGetDataPtr • 11-3

*dpGetPointer • 11-4

1

100 MX_INVLDCNT • 2-19

101 MX_NOPIN • 2-19

102 MX_MULTICON • 2-20

109 MX_ILLGLTSN • 2-20

113 MX_NOSWITCH • 2-20

114 MX_ILLGLCON • 2-20

122 UT_INVLDPRM • 2-20

126 UT_NOURAM • 2-20

129 UT_TMRIVLD • 2-20

137 UT_INVLDVAL • 2-21

152 CB_BADFUNC • 2-21

156 CB_NOFILE • 2-21

157 CB_FORMAT • 2-21

162 CB_INVLDERROR • 2-21

163 CB_INVLDEVENT • 2-21

166 CB_INSNOTREC • 2-21

173 CB_MULTITIMER • 2-22

194 MX_INVLDTRM • 2-22

2

20 LPT_PREVERR • 2-19

21 LPT_FATAL • 2-19

22 LPT_FATALINTEST • 2-19

233 FM_NOCON • 2-22

24 LPT_TOMANYARGS • 2-19

3

3 LPT_NOCOMCHAN • 2-18

4

455 ECP_PROTOVER • 2-22

5

5 SYS_MEM_ALLOC_ERR • 2-19

6

601 SYS_INTERNAL_ERR • 2-22

610 SYS_SPAWN_ERR • 2-22

611 SYS_NETWORK_ERR • 2-22

612 SYS_PROTOCOL_ERR • 2-22

650 TAPI_BADCHANNEL • 2-23

651 TAPI_BADTESTER • 2-23

652 TAPI_NOTFOUND • 2-23

653 TAPI_REFUSED • 2-23

656 TAPI_CHANLIMIT • 2-23

657 TAPI_BUFOFLOW • 2-23

A

addcon • 2-24

AddNew • 7-17

AddNew[STRUCTURE] • 7-17

adelay • 2-25

arrays • 3-34, 3-58

asweepX • 2-26

Averaged measurements • 2-6

avgX • 2-28

B

beta • 3-6, 3-8, 3-9, 3-11, 3-13

beta1 • 3-6

Index

Index Keithley Test Environment (KTE) Programmer's Manual

Index-2 S500-901-01 Rev. B / January 2019

beta2 • 3-8

beta2a • 3-9

beta3a • 3-11

bice • 3-13

bipolar

bipolar subroutines • 3-4, 3-13, 3-15, 3-17, 3-18,

3-19, 3-21, 3-26, 3-42, 3-43, 3-44, 3-45, 3-59,

3-61, 3-70

Bipolar subroutines • 3-4

bkdn • 3-14

bmeasX • 2-30

body effect • 3-37

breakdown voltage

collector-base • 3-15, 3-17

collector-emitter • 3-18, 3-19, 3-21, 3-22

drain-source • 3-24, 3-25

emitter-base • 3-26

voltage • 3-14

bsweepX • 2-32

bvcbo • 3-15

bvcbo1 • 3-17

bvceo • 3-18

bvceo2 • 3-19

bvces • 3-21

bvces1 • 3-22

bvdss • 3-24

bvdss1 • 3-25

bvebo • 3-26

C

Calling the getlpterr function • 2-17

cap • 3-28

capacitance measurements • 3-28

capacitors • 3-6

Categorized command lists • 2-1

Categorized subroutine lists • 3-4

clrcon • 2-33

clrscn • 2-34

clrtrg • 2-35

Combination commands • 2-2

Commands for USB instruments not supported by

systems drivers • 2-15

Commands supported by all drivers • 2-12

Commands supported for CVUs • 2-13

Commands supported for DMMs • 2-14

Commands supported for PGUs • 2-14

Commands supported for scope cards • 2-14

Commands supported for SMUs • 2-13

Commands supported for switch mainframes • 2-15

Commands supported for systems • 2-14

Commands supported for the RSA306B spectrum

analyzer • 2-13

Commands that support timer functions • 2-15

comment

update comment routines • 7-15

conpin • 2-37

conpth • 2-39

Contact information • 1-1

ContSkipAbortDlg • 10-13

ContSkipAbortDlg - Continue Skip Abort Message

Dialog • 10-13

Conventions used in this manual • 1-2

CreateNew • 7-18

CreateNew[STRUCTURE] • 7-18

current

collector-base • 3-43

drain • 3-46

leakage • 3-44, 3-45, 3-53, 3-57

substrate • 3-55

D

data logging

Keithley Test Environment (KTE) Programmer's Manual Index

S500-901-01 Rev. B / January 2019 Index-3

data logging routines • 7-2

Data logging routines • 7-2

data pool

data pool functions • 11-1

Data pool command reference • 11-1

delay • 2-40, 3-56, 3-68

delcon • 2-41

delete

DeleteLimit • 7-15

DeleteLimitCode • 7-15

DeleteLot • 7-13

DeleteParam • 7-14

DeleteSite • 7-14

DeleteWafer • 7-13

DeleteLimit • 7-15

DeleteLimitCode • 7-15

DeleteLot • 7-13

DeleteParam • 7-14

DeleteSite • 7-14

DeleteWafer • 7-13

deltl1 • 3-29

deltw1 • 3-30

devclr • 2-42

devint • 2-42

dialog

ContSkipAbortDlg - Continue Skip Abort

Message Dialog • 10-13

InputMsgDlg - Input Message Dialog • 10-4

LBoxDlg - List Box Message Dialog • 10-14

LotDlg - Lot Information Dialog • 10-4

OkCancelAbortMsgDlg - Ok Cancel Abort

Message Dialog • 10-5

OkCancelMsgDlg - Ok Cancel Message Dialog •

10-5

OkMsgDlg - Ok Message Dialog • 10-5

ScrollMsgDlg - Scrollable Message Dialog • 10-6

ScrollMsgDlgClr - Scrollable Message Dialog

Clear • 10-6

ScrollMsgDlgMsg - Scrollable Message Dialog

Message • 10-7

StatusDlg - Status Dialog • 10-7

UpdateModelessDlgs - Update Modeless

Dialogs • 10-8

UpdateStatusDlg - Update Status Dialog • 10-8

VarMsgDlg - Variable Message Dialog • 10-9

WfrIdDlg - Single Wafer Information Dialog •

10-11

WfrIdsDlg - Multiple Wafer Information Dialog •

10-10

YesNoAbortMsgDlg - Yes No Abort Message

Dialog • 10-13

YesNoCancelMsgDlg - Yes No Cancel Message

Dialog • 10-13

diode • 3-6, 3-57, 3-71

disable • 2-44

dpAddArray • 11-3

dpAddData • 11-1

dpAddPointer • 11-2

dpPrintAllData • 11-6

dpPrintData • 11-5

dpRemoveData • 11-5

drain

drain conductance • 3-39

drain current • 3-46, 3-48, 3-49

Dual-site commands • 2-2

E

enable • 2-44

end

EndLot • 7-6

EndSite • 7-6

EndWafer • 7-6

Index Keithley Test Environment (KTE) Programmer's Manual

Index-4 S500-901-01 Rev. B / January 2019

EndLot • 7-6

EndSite • 7-6

EndWafer • 7-6

Error handling • 2-16

Error messages • 2-17, 2-18

ev • 3-31

F

FET

FET and JFET subroutines • 3-4, 3-40, 3-49,

3-76, 3-78

FET and JFET subroutines • 3-4

FileExist • 7-12

fimv • 3-33

FindFirst • 7-19

FindFirst[STRUCTURE] • 7-19

FindLast • 7-19

FindLast[STRUCTURE] • 7-19

FindNext • 7-20

FindNext[STRUCTURE] • 7-20

FindPrev • 7-21

FindPrev[STRUCTURE] • 7-21

Fixed range versus autorange measurements • 2-16

Fixed ranging • 2-9

Fix-range trigger instruments • 2-16

fnddat • 3-34

fndtrg • 3-35

forceX • 2-45

fvmi • 3-36

G

gamma • 3-37

gamma1 • 3-37

gate_charge • 4-4

gd • 3-39

General commands • 2-2

GetComment • 7-15

GetLimit • 7-16

GetLimitCode • 7-16

GetLot • 7-7

GetLotData • 7-11

getlpterr • 2-46

GetParam • 7-10

GetParamList • 7-11

GetProgramArgs • 10-1

GetProgramArgs - Get Program Command Line

Arguments • 10-1

GetSite • 7-9

GetStartTime • 7-13

getstatus • 2-47

GetWafer • 7-8

gm • 3-40

GPIB • 2-12

GPIB commands • 2-3

H

High-Voltage Library commands • 4-4

How to use the library reference • 3-2, 4-1

hv_bvsweep • 4-6

hvcv_3term • 4-8

hvcv_3term_basic • 4-11

hvcv_comp • 4-13

hvcv_genCompData • 4-14

hvcv_genCompFreq • 4-16

hvcv_getData • 4-18

hvcv_intgcg • 4-19

hvcv_measure • 4-21

hvcv_storeData • 4-23

hvcv_sweep • 4-24

hvcv_sweep_basic • 4-27

hvcv_test • 4-29

Keithley Test Environment (KTE) Programmer's Manual Index

S500-901-01 Rev. B / January 2019 Index-5

hvcv_test_basic • 4-32

HVLib command reference • 4-1

I

ibic1 • 3-42

icbo • 3-43

iceo • 3-44

ices • 3-45

id1 • 3-46

idsat • 3-48

idss • 3-49

idvsvd • 3-51

idvsvg • 3-52

iebo • 3-53

imeast • 2-48

InitUINew • 10-3

InitUINew - Initialize User Interface Library • 10-3

InputMsgDlg • 10-4

InputMsgDlg - Input Message Dialog • 10-4

insbind • 2-49

InsertNew • 7-22

InsertNew[STRUCTURE] • 7-22

Instrument and terminal IDs • 2-15

Instruments and instrument drivers • 2-12

Integrated measurements • 2-6

intgX • 2-50

Introduction • 1-1, 2-1, 3-1, 4-1, 5-1, 6-1, 8-1, 9-1,

10-1, 11-1

isubmx • 3-55

K

kdelay • 3-56

Keithley data files (KDF) library command

reference • 7-1

Keithley User Interface (KUI) library

ContSkipAbortDlg - Continue Skip Abort

Message Dialog • 10-13

GetProgramArgs - Get Program Command Line

Arguments • 10-1

InitUINew - Initialize User Interface Library • 10-3

InputMsgDlg - Input Message Dialog • 10-4

LBoxDlg - List Box Message Dialog • 10-14

LotDlg - Lot Information Dialog • 10-4

OkCancelAbortMsgDlg - Ok Cancel Abort

Message Dialog • 10-5

OkCancelMsgDlg - Ok Cancel Message Dialog •

10-5

OkMsgDlg - Ok Message Dialog • 10-5

QuitUI - Quit User Interface • 10-6

ScrollMsgDlg - Scrollable Message Dialog • 10-6

ScrollMsgDlgClr - Scrollable Message Dialog

Clear • 10-6

ScrollMsgDlgMsg - Scrollable Message Dialog

Message • 10-7

StatusDlg - Status Dialog • 10-7

UpdateModelessDlgs - Update Modeless

Dialogs • 10-8

UpdateStatusDlg - Update Status Dialog • 10-8

VarMsgDlg - Variable Message Dialog • 10-9

WfrIdDlg - Single Wafer Information Dialog •

10-11

YesNoAbortMsgDlg - Yes No Abort Message

Dialog • 10-13

YesNoCancelMsgDlg - Yes No Cancel Message

Dialog • 10-13

Keithley User Interface Library command reference •

10-1

KI_MultiSite command reference • 5-1

kibdefclr • 2-52

kibdefint • 2-53

kibrcv • 2-54

kibsnd • 2-55

kibspl • 2-56

kibsplw • 2-57

Index Keithley Test Environment (KTE) Programmer's Manual

Index-6 S500-901-01 Rev. B / January 2019

KTXE_AT result-based testing command reference •

9-1

KTXE_AT_alternate_site_site_end() • 9-1

KTXE_AT_alternate_site_test_end() • 9-1

KTXE_AT_AlterWWP() • 9-2

KTXE_AT_CheckResWithLimits() • 9-2

KTXE_AT_cleanup_site() • 9-3

KTXE_AT_debug_print() • 9-3

KTXE_AT_demo_data_func() • 9-3

KTXE_AT_enable_kdf() • 9-3

KTXE_AT_FindAltSite() • 9-4

KTXE_AT_generate_val() • 9-4

KTXE_AT_LogResultList() • 9-5

KTXE_AT_more_sites_cur_wafer_site_end() • 9-5

KTXE_AT_more_tests_curr_wafer_site_end() • 9-5

KTXE_AT_more_tests_curr_wafer_wafer_begin() •

9-5

KTXE_AT_more_tests_next_wafer_site_end() • 9-6

KTXE_AT_wafer_begin() • 9-6

KTXE_RP zone-based testing command reference •

8-1

KTXE_RP_CleanUpWDF • 8-1

KTXE_RP_CreateRandomWDF • 8-1

KTXE_RP_CreateWPF • 8-2

KTXE_RP_GetUsrArgs • 8-2

KTXE_RP_RemoveWPF • 8-2

L

LBoxDlg • 10-14

LBoxDlg - List Box Message Dialog • 10-14

leak • 3-57

leakage current • 3-44, 3-53, 3-57

limit code

DeleteLimit • 7-15

DeleteLimitCode • 7-15

GetLimitCode • 7-16

LimitExist • 7-24

PutLimit • 7-17

LimitExist • 7-24

limits

update limits routines • 7-16

limitX • 2-57

logstp • 3-58

lorangeX • 2-59

lot

DeleteLot • 7-13

EndLot • 7-6

GetLot • 7-7

LotExist • 7-12

PutLot • 7-2

LotDlg • 10-4

LotDlg - Lot Information Dialog • 10-4

LotExist • 7-12

LPTLib command descriptions • 2-24

LPTLib command reference • 2-1

M

MatchParam2Limit • 7-12

math

math subroutines • 3-5, 3-34, 3-35, 3-56, 3-58,

3-68

Math and support subroutines • 3-5

Matrix commands • 2-3

Matrix operations • 2-9

Measure commands • 2-3

Measuring • 2-6

measX • 2-61

MESFET • 3-40, 3-49, 3-76, 3-78

MOSFET

drain conductance • 3-39

gate length reduction • 3-29

Keithley Test Environment (KTE) Programmer's Manual Index

S500-901-01 Rev. B / January 2019 Index-7

gate width reduction • 3-30

MOSFET subroutines • 3-5, 3-24, 3-25, 3-29,

3-30, 3-37, 3-39, 3-46, 3-48, 3-55, 3-72, 3-74,

3-79, 3-80, 3-82, 3-85

threshold voltage • 3-79, 3-82, 3-85

MOSFET subroutines • 3-5

mpulse • 2-63

multi_site_clear_mapping() • 5-1

multi_site_mapping() • 5-3

N

new

AddNew • 7-17

CreateNew • 7-18

O

OkCancelAbortMsgDlg • 10-5

OkCancelAbortMsgDlg - Ok Cancel Abort Message

Dialog • 10-5

OkCancelMsgDlg - Ok Cancel Message Dialog •

10-5

OkCancelMsgDlgDialog • 10-5

OkMsgDlg • 10-5

OkMsgDlg - Ok Message Dialog • 10-5

Optimizing test sequences • 2-16

Ordinary measurements • 2-6

Overview • 1-2, 7-1

oxide thickness • 3-69

P

parameter

DeleteParam • 7-14

GetParamList • 7-11

PutParam • 7-4

PutParamList • 7-5

PARLib command reference • 3-1

pgu_current_limit • 2-64

pgu_delay • 2-64

pgu_fall • 2-65

pgu_halt • 2-66

pgu_height • 2-66

pgu_init • 2-67

pgu_load • 2-67

pgu_mode • 2-68

pgu_offset • 2-69

pgu_period • 2-69

pgu_range • 2-70

pgu_rise • 2-71

pgu_select • 2-71

pgu_trig • 2-72

pgu_trig_burst • 2-72

pgu_trig_unit • 2-73

pgu_width • 2-74

PrAbsMove • 6-1

PrAdjustZHeight • 6-2

PrAutoAlign • 6-2

PrCassetteMap • 6-2

PrCassetteMask • 6-3

PrCheckOptions • 6-4

PrChuck • 6-4

PrClearAll • 6-5

PrClearPipeline • 6-5

PrError • 6-5

PrGetNxtWafer • 6-6

PrGetProduct • 6-6

PrGetWafer • 6-7

PrInit • 6-7

PrLoad • 6-8

PrLoadProduct • 6-8

PrLowerBoat • 6-9

PrMove • 6-9

PrNeedleClean • 6-9

Index Keithley Test Environment (KTE) Programmer's Manual

Index-8 S500-901-01 Rev. B / January 2019

Prober and prober driver command reference • 6-1

PrProfile • 6-10

PrPutNxtSlot • 6-10

PrPutWafer • 6-11

PrQueryChuckTemp • 6-11

PrQueryZHeight • 6-12

PrReadId • 6-12

PrRelMove • 6-12

PrRelReturn • 6-13

PrSerialPoll • 6-13

PrSetChuckTemp • 6-13

PrSetDiam • 6-14

PrSetDieSize • 6-14

PrSetFlat • 6-14

PrSetMode • 6-14

PrSetPipeline • 6-15

PrSetQuadrant • 6-15

PrSetRefDie • 6-15

PrSetSlotStatus • 6-16

PrSetTime • 6-17

PrSetUnits • 6-17

PrSetZHeight • 6-17

PrSmifClamp • 6-18

PrSmifLock • 6-18

PrSmifStatus • 6-19

PrStart • 6-20

PrStatus • 6-20

PrStop • 6-21

PrUnLoad • 6-21

PrWriteRead • 6-21

PrWriteReadSRQ • 6-22

PrZParams • 6-24

PrZTravel • 6-24

Pulse generator commands • 2-4

pulseX • 2-75

PutComment • 7-16

PutLimit • 7-17

PutLot • 7-2

PutParam • 7-4

PutParamList • 7-5

PutSite • 7-3

PutWafer • 7-3

Q

QuitUI • 10-6

QuitUI - Quit User Interface • 10-6

R

Range commands • 2-4

Range limits • 2-9

rangeX • 2-77

Ranging • 2-8

rcsat • 3-59

rdelay • 2-79

re • 3-61

refctrl • 2-79

remove • 7-23

remove data points • 3-34

Remove[STRUCTURE] • 7-23

res • 3-63

res2 • 3-64

res4 • 3-65

resistance

measurements • 3-61, 3-63, 3-64, 3-65, 3-66,

3-67

resistors • 3-6, 3-63, 3-64, 3-65, 3-66

Resistors, diodes, capacitors, and special structure

subroutines • 3-6

Result values indicating an error • 2-18

resv • 3-66

reverse bias • 3-43, 3-53

Keithley Test Environment (KTE) Programmer's Manual Index

S500-901-01 Rev. B / January 2019 Index-9

rsa_close • 2-80

rsa_detect_peaks • 2-81

rsa_init • 2-83

rsa_measure • 2-83

rsa_measure_next • 2-84

rsa_selftest • 2-85

rsa_setup • 2-86

rtfary • 2-88

rttrigary • 2-88

rvdp • 3-67

S

savgX • 2-89

Scope card commands • 2-5

scp_close • 2-90

scp_detect_peaks • 2-91

scp_init • 2-93

scp_measure • 2-93

scp_measure_next • 2-94

scp_selftest • 2-95

scp_setup • 2-96

ScrollMsgDlg • 10-6

ScrollMsgDlg - Scrollable Message Dialog • 10-6

ScrollMsgDlgClr • 10-6

ScrollMsgDlgClr - Scrollable Message Dialog Clear •

10-6

ScrollMsgDlgMsg • 10-7

ScrollMsgDlgMsg - Scrollable Message Dialog

Message • 10-7

searchX • 2-97

setauto • 2-100

setmode • 2-101

setmode modifier tables • 2-102

Settling time • 2-8

setXmtr • 2-108

sintgX • 2-109

site

DeleteSite • 7-14

EndSite • 7-6

GetSite • 7-9

PutSite • 7-3

site_disable • 2-110

site_enable • 2-111

site_mapping • 2-112

site_status • 2-113

Smart ranging • 2-8

smeasX • 2-114

Source commands • 2-5

Sourcing and limits • 2-7

Special error values returned • 2-17

Spectrum analyzer commands • 2-5

ssmeasX • 2-116

StatusDlg • 10-7

StatusDlg - Status Dialog • 10-7

Sticky ranging • 2-8

structure

structure handling routines • 7-17

Structure handling routines • 7-17

Subroutine descriptions • 3-6

substrate • 3-55

Sweeping • 2-10

sweepX • 2-118

Systems documentation • 1-1

T

tdelay • 3-68

Timing commands • 2-6

tox • 3-69

transconductance • 3-40

transistor • 3-59, 3-70, 3-74, 3-76

trigger mode

Index Keithley Test Environment (KTE) Programmer's Manual

Index-10 S500-901-01 Rev. B / January 2019

native • 3-35

Triggers • 2-11

trigXg, trigXl • 2-121

tstsel • 2-124

U

update

update comment routines • 7-15

update limits routines • 7-16

Update comment routines • 7-15

Update limits routines • 7-16

UpdateModelessDlgs • 10-8

UpdateModelessDlgs - Update Modeless Dialogs •

10-8

UpdateStatusDlg • 10-8

UpdateStatusDlg - Update Status Dialog • 10-8

Use combination commands • 2-16

User interface library functions • 10-1

User interface library variables • 10-4

Using the LPTLib • 2-6

V

VarMsgDlg • 10-9

VarMsgDlg - Variable Message Dialog • 10-9

vbes • 3-70

vf • 3-71

vg2 • 3-72

vgsat • 3-74

voltage

base-emitter • 3-70

early • 3-31

forward biased junction • 3-71

gate-source • 3-72, 3-74, 3-82, 3-85

pinch-off • 3-76, 3-78

threshold • 3-74, 3-79, 3-80, 3-82

vp • 3-76

vp1 • 3-78

vt14 • 3-79

vtati • 3-80

vtext • 3-82

vtext2 • 3-85

vtext3 • 3-87

W

WfrIdDlg • 10-11

WfrIdDlg - Single Wafer Information Dialog • 10-11

WfrIdsDlgDialog • 10-10

Y

YesNoAbortMsgDlg • 10-13

YesNoAbortMsgDlg - Yes No Abort Message

Dialog • 10-13

YesNoCancelMsgDlg • 10-13

YesNoCancelMsgDlg - Yes No Cancel Message

Dialog • 10-13

Specifications are subject to change without notice.

All Keithley trademarks and trade names are the property of Keithley Instruments.

All other trademarks and trade names are the property of their respective companies.

Keithley Instruments

Corporate Headquarters • 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168 • 1-800-935-5595 • www.tek.com/keithley

12/17

	Keithley Test Environment (KTE) Programmer's Manual
	Safety precautions
	Table of contents
	1 Introduction
	Contact information
	Systems documentation
	Overview
	Conventions used in this manual

	2 LPTLib command reference
	Introduction
	Categorized command lists
	Combination commands
	Dual-site commands
	General commands
	GPIB commands
	Matrix commands
	Measure commands
	Pulse generator commands
	Range commands
	Scope card commands
	Spectrum analyzer commands
	Source commands
	Timing commands

	Using the LPTLib
	Measuring
	Ordinary measurements
	Averaged measurements
	Integrated measurements

	Sourcing and limits
	Ranging
	Smart ranging
	Sticky ranging
	Settling time
	Fixed ranging
	Range limits

	Matrix operations
	Sweeping
	Triggers
	GPIB
	Instruments and instrument drivers
	Commands supported by all drivers
	Commands supported for SMUs
	Commands supported for CVUs
	Commands supported for the RSA306B spectrum analyzer
	Commands supported for PGUs
	Commands supported for scope cards
	Commands supported for systems
	Commands supported for DMMs
	Commands supported for switch mainframes
	Commands that support timer functions
	Commands for USB instruments not supported by systems drivers

	Instrument and terminal IDs
	Optimizing test sequences
	Fixed range versus autorange measurements
	Fix-range trigger instruments
	Use combination commands

	Error handling
	Calling the getlpterr function
	Error messages
	Special error values returned
	Result values indicating an error
	Error messages
	3 LPT_NOCOMCHAN
	5 SYS_MEM_ALLOC_ERR
	20 LPT_PREVERR
	21 LPT_FATAL
	22 LPT_FATALINTEST
	24 LPT_TOMANYARGS
	100 MX_INVLDCNT
	101 MX_NOPIN
	102 MX_MULTICON
	109 MX_ILLGLTSN
	113 MX_NOSWITCH
	114 MX_ILLGLCON
	122 UT_INVLDPRM
	126 UT_NOURAM
	129 UT_TMRIVLD
	137 UT_INVLDVAL
	152 CB_BADFUNC
	156 CB_NOFILE
	157 CB_FORMAT
	162 CB_INVLDERROR
	163 CB_INVLDEVENT
	166 CB_INSNOTREC
	173 CB_MULTITIMER
	194 MX_INVLDTRM
	233 FM_NOCON
	455 ECP_PROTOVER
	601 SYS_INTERNAL_ERR
	610 SYS_SPAWN_ERR
	611 SYS_NETWORK_ERR
	612 SYS_PROTOCOL_ERR
	650 TAPI_BADCHANNEL
	651 TAPI_BADTESTER
	652 TAPI_NOTFOUND
	653 TAPI_REFUSED
	656 TAPI_CHANLIMIT
	657 TAPI_BUFOFLOW

	LPTLib command descriptions
	addcon
	adelay
	asweepX
	avgX
	bmeasX
	bsweepX
	clrcon
	clrscn
	clrtrg
	conpin
	conpth
	delay
	delcon
	devclr
	devint
	disable
	enable
	forceX
	getlpterr
	getstatus
	imeast
	insbind
	intgX
	kibdefclr
	kibdefint
	kibrcv
	kibsnd
	kibspl
	kibsplw
	limitX
	lorangeX
	measX
	mpulse
	pgu_current_limit
	pgu_delay
	pgu_fall
	pgu_halt
	pgu_height
	pgu_init
	pgu_load
	pgu_mode
	pgu_offset
	pgu_period
	pgu_range
	pgu_rise
	pgu_select
	pgu_trig
	pgu_trig_burst
	pgu_trig_unit
	pgu_width
	pulseX
	rangeX
	rdelay
	refctrl
	rsa_close
	rsa_detect_peaks
	rsa_init
	rsa_measure
	rsa_measure_next
	rsa_selftest
	rsa_setup
	rtfary
	rttrigary
	savgX
	scp_close
	scp_detect_peaks
	scp_init
	scp_measure
	scp_measure_next
	scp_selftest
	scp_setup
	searchX
	setauto
	setmode
	setmode modifier tables
	setXmtr
	sintgX
	site_disable
	site_enable
	site_mapping
	site_status
	smeasX
	ssmeasX
	sweepX
	trigXg, trigXl
	tstsel

	3 PARLib command reference
	Introduction
	How to use the library reference
	Categorized subroutine lists
	Bipolar subroutines
	FET and JFET subroutines
	Math and support subroutines
	MOSFET subroutines
	Resistors, diodes, capacitors, and special structure subroutines

	Subroutine descriptions
	beta1
	beta2
	beta2a
	beta3a
	bice
	bkdn
	bvcbo
	bvcbo1
	bvceo
	bvceo2
	bvces
	bvces1
	bvdss
	bvdss1
	bvebo
	cap
	deltl1
	deltw1
	ev
	fimv
	fnddat
	fndtrg
	fvmi
	gamma1
	gd
	gm
	ibic1
	icbo
	iceo
	ices
	id1
	idsat
	idss
	idvsvd
	idvsvg
	iebo
	isubmx
	kdelay
	leak
	logstp
	rcsat
	re
	res
	res2
	res4
	resv
	rvdp
	tdelay
	tox
	vbes
	vf
	vg2
	vgsat
	vp
	vp1
	vt14
	vtati
	vtext
	vtext2
	vtext3

	4 HVLib command reference
	Introduction
	How to use the library reference
	High-Voltage Library commands
	gate_charge
	hv_bvsweep
	hvcv_3term
	hvcv_3term_basic
	hvcv_comp
	hvcv_genCompData
	hvcv_genCompFreq
	hvcv_getData
	hvcv_intgcg
	hvcv_measure
	hvcv_storeData
	hvcv_sweep
	hvcv_sweep_basic
	hvcv_test
	hvcv_test_basic

	5 KI_MultiSite command reference
	Introduction
	multi_site_clear_mapping()
	multi_site_mapping()

	6 Prober and prober driver command reference
	Introduction
	PrAbsMove
	PrAdjustZHeight
	PrAutoAlign
	PrCassetteMap
	PrCassetteMask
	PrCheckOptions
	PrChuck
	PrClearAll
	PrClearPipeline
	PrError
	PrGetNxtWafer
	PrGetProduct
	PrGetWafer
	PrInit
	PrLoad
	PrLoadProduct
	PrLowerBoat
	PrMove
	PrNeedleClean
	PrProfile
	PrPutNxtSlot
	PrPutWafer
	PrQueryChuckTemp
	PrQueryZHeight
	PrReadId
	PrRelMove
	PrRelReturn
	PrSerialPoll
	PrSetChuckTemp
	PrSetDiam
	PrSetDieSize
	PrSetFlat
	PrSetMode
	PrSetPipeline
	PrSetQuadrant
	PrSetRefDie
	PrSetSlotStatus
	PrSetTime
	PrSetUnits
	PrSetZHeight
	PrSmifClamp
	PrSmifLock
	PrSmifStatus
	PrStart
	PrStatus
	PrStop
	PrUnLoad
	PrWriteRead
	PrWriteReadSRQ
	PrZParams
	PrZTravel

	7 Keithley data files (KDF) library command reference
	Overview
	Data logging routines
	PutLot
	PutWafer
	PutSite
	PutParam
	PutParamList
	EndLot
	EndWafer
	EndSite
	GetLot
	GetWafer
	GetSite
	GetParam
	GetParamList
	GetLotData
	MatchParam2Limit
	FileExist
	LotExist
	GetStartTime
	DeleteLot
	DeleteWafer
	DeleteSite
	DeleteParam
	DeleteLimitCode
	DeleteLimit

	Update comment routines
	GetComment
	PutComment

	Update limits routines
	GetLimitCode
	GetLimit
	PutLimit

	Structure handling routines
	AddNew[STRUCTURE]
	CreateNew[STRUCTURE]
	FindFirst[STRUCTURE]
	FindLast[STRUCTURE]
	FindNext[STRUCTURE]
	FindPrev[STRUCTURE]
	InsertNew[STRUCTURE]
	Remove[STRUCTURE]
	LimitExist

	8 KTXE_RP zone-based testing command reference
	Introduction
	KTXE_RP_CleanUpWDF
	KTXE_RP_CreateRandomWDF
	KTXE_RP_CreateWPF
	KTXE_RP_GetUsrArgs
	KTXE_RP_RemoveWPF

	9 KTXE_AT result-based testing command reference
	Introduction
	KTXE_AT_alternate_site_site_end()
	KTXE_AT_alternate_site_test_end()
	KTXE_AT_AlterWWP()
	KTXE_AT_CheckResWithLimits()
	KTXE_AT_cleanup_site()
	KTXE_AT_debug_print()
	KTXE_AT_demo_data_func()
	KTXE_AT_enable_kdf()
	KTXE_AT_FindAltSite()
	KTXE_AT_generate_val()
	KTXE_AT_LogResultList()
	KTXE_AT_more_sites_cur_wafer_site_end()
	KTXE_AT_more_tests_curr_wafer_site_end()
	KTXE_AT_more_tests_curr_wafer_wafer_begin()
	KTXE_AT_more_tests_next_wafer_site_end()
	KTXE_AT_wafer_begin()

	10 Keithley User Interface Library command reference
	Introduction
	GetProgramArgs
	InitUINew
	InputMsgDlg
	LotDlg
	OkCancelAbortMsgDlg
	OkCancelMsgDlgDialog
	OkMsgDlg
	QuitUI
	ScrollMsgDlg
	ScrollMsgDlgClr
	ScrollMsgDlgMsg
	StatusDlg
	UpdateModelessDlgs
	UpdateStatusDlg
	VarMsgDlg
	WfrIdsDlgDialog
	WfrIdDlg
	YesNoAbortMsgDlg
	YesNoCancelMsgDlg
	ContSkipAbortDlg
	LBoxDlg

	11 Data pool command reference
	Introduction
	dpAddData
	dpAddPointer
	dpAddArray
	*dpGetDataPtr
	*dpGetPointer
	*dpGetArrayElement
	dpRemoveData
	dpPrintData
	dpPrintAllData

	12 Index
	Contact us

