ADK
Application Developer Kit

Printable Online Help

VDO OO0 RO TEktronix
077-0693-00 7/

ADK
Application Developer Kit

Printable Online Help

www.tektronix.com
077-0693-00

Tektron/ix

Copyright © Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its
subsidiaries or suppliers, and are protected by national copyright laws and international treaty provisions.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this
publication supersedes that in all previously published material. Specifications and price change privileges
reserved.

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.
MSDN is registered trade mark of Microsoft.

Online help version: 00

(4/17/2012)

077-0693-00 is the printable PDF file of online help 076-0277-00.

Contacting Tektronix
Tektronix, Inc.

14150 SW Karl Braun Drive
P.O. Box 500

Beaverton, OR 97077

USA

For product information, sales, service, and technical support:
= In North America, call 1-800-833-9200.
= Worldwide, visit www.tektronix.com to find contacts in your area.

http://www.tektronix.com/contact

Table of Contents

Table of Contents

Introduction
D 1Te10 34151714 10 o DU 1
USINg ONIINE NeIP ..o e e et e e e e 1
General help fUNCLIONS ...t e e et e e e nneenaees 1
(010104 1140 s S P 2
Lo T4 ULz B o) o) /N 3
Getting started
N D) S 4% T ST 5
What iS NeW 1 thiS TEIEASEu et 6
SYSTEM TEQUITEIMIEIIE ...t utt ettt et ettt eete et et e ettt e e et e e e et e aeeateeaaeenteeateenneenneenneenneenneans 6
Application direCtories and USAZE.uuuteni ettt ettt et e e e e e e aeaeas 7

Operating basics

BaSiC IO ACES ...ttt ettt ettt et e e e e e e e 9
INormalized Vector INteITace.uenei e 9
TFaStFrame INteITaCE.v ittt et e 9
IS ttINgS INEETTACE. ...ttt ettt et et e e et et e e 10
TRESUIL INEEITACE. ... e 11
IReSUltCOollection INEEITACE ... vttt et et et et e et e ete e e aeneanass 11

DPOJET Measurement PIUg-inc.ooouiiiiiiitii i e e et et e e ee e en 13

Math Plugins
USING Math PIUZINS ... ettt ittt et e e et et et e e e e e et et e e te e e e e enneans 14
WIItING Math PIUGINS ..ttt et et ettt et et et et et e teeaeaneanees 14
MATLAB CUuStom fUNCHIONSttt e ee e 19

Using the basic Function interface to create MATLAB functions................c.coooiiiien..n. 19
Using a Class to create MATLAB fUncCtions.........oouvviiiiiiiniiiiii i eieeeeeeannes 20

DataAccess PUDIIC INEEITACEiitt ettt e e e e e et e e e e 21
) 1703 0TS 3 T 22
ITekScopeDataSource INtETTaCEv.uvit ettt et eae e 22
ITekScopeDataAccess INLEITACE. .. .o.uuiie it e e et e e e eeee e naeeas 23
ITekScopeData INEI ACEviiet ittt et et ettt e e e et eeaeaaeanees 23

1S e 1105 o ¢ [S U 23
ITektronixLicenseFactory Class.c..uviuiiiiit i e e e e e e et e eenaeaas 24
ITektroniX LIiCenSe INtEITaACE. ... vttt ettt ettt et et ettt et et e e e et e ereeaeaeneanees 25
ITektronixLicenseDetails interfaceooiuiiiiiiiiiii i e, 25
ITekScopelicense INEITACEiiiei i e e et e e e e iaeeas 25
ITekScopeLicenseDetails INterfacec.viiiiitiii i e e eae e 26

ADK Printable Online Help

Table of Contents

Index

LicenseStatusChangeDelegate delegate...........oooiiiiiiiiii e 26
LicenSeTYPe @NUMETALION.\ttt ettt et e te et e eete et e eteeeeeateeteeateeaaeenneenneanneanneanes 26
OPHONSTATUS SNUMETALION ..\ttt ettt et et et et et e ee e ate e e raeeneenaeerneerneeneenneennees 27
LicenseAcquireStatus ENUMETAtIONuuuutieteet et e ttetereteeeeeteeeaeereeaeeaeereenness 27
LicenseReleaseStatus enumMerationeoieiiniiitiiita i aeeaees 27
20 0 o 1 28
g0 [T ST AR 7311 o) T 30

ADK Printable Online Help

Introduction

Documentation

Documentation

The following table lists the documentation that is available for the product and shows where to find it.

Product documentation

item

Purpose Location

Online Help Provides developers guide related to ADK toolsets. m

www Tektroni: com

User Manual Provides developers guide related to ADK toolsets. m

(adapted from the online

help)

www Tektronix com

Using online help

Select Help from the menu to open the help file. You can also find an electronic copy of the help file
in the Documents directory.

Tables of contents (TOC) tab. Organizes the Help into book-like sections. Select a book icon to open a
section; select any of the topics listed under the book.

Index tab. Enables you to scroll a list of alphabetical keywords. Select the topic of interest to show the
appropriate help page.

Search tab. Allows a text-based search.

Follow these steps:

1.

2.

Type the word or phrase you want to find in the search box. If the word or phrase is not found, try the
Index tab.

Choose a topic in the lower box, and then select the Display button.

General help functions

ADK Printable Online Help

Select the Print button from the Help topics menu bar to print a topic.
To return to the previous window, select the Back button.
Use hyperlinks to jump from one topic to another.

If the back button is grayed out or a jump is not available, choose the Help Topics button to return to
the originating help folder.

Introduction

Conventions

Conventions

This documents use conventions to help readers distinguish source code from language elements, from
keyboard sequences, and so on. Document conventions are similar to MSDN and the following table
clarifies the conventions used.

Table 1: Typographic conventions

Convention Description Example

Monospace Indicates source code, code examples, input to the command line, Class
application output, code lines embedded in text, and variables and
code elements.

Bold Indicates most predefined programming elements, including Path class
namespaces, classes, delegates, objects, interfaces, methods, Resolve method
functions, macros, structures, constructors, properties, events,
enumerations, fields, operators, statements, directives, data types,
keywords, exceptions, non-HTML attributes, configuration tags,
registry keys, subkeys, and values.

Italic Indicates placeholders, most often method or function parameters; context parameter
these placeholders represent information that must be supplied by
the implementation or the user.

Capital letters Indicates the names of keys and key sequences. ENTER

CTRL+R

Plus sign

Indicates a combination of keys. For example, ALT+F1 means to hold ALT+F1

down the ALT key while pressing the F1 key.

ADK Printable Online Help

Introduction

Technical support

Technical support

Tektronix values your feedback on our products. To help us serve you better, please send us your
suggestions, ideas, or comments on your application or oscilloscope.

When you contact Tektronix Technical Support, please include the following information (be as specific as
possible):

General information

All instrument model numbers.

Hardware options, if any.

Probes and other accessories used.

Your name, company, mailing address, phone number, and FAX number.

Please indicate if you would like to be contacted by Tektronix about your suggestion or comments.

Application specific information

Software version number of firmware and all other software installed on the instrument.
Description of the problem such that technical support can duplicate the problem.

If possible, source code of the program you are developing.

If possible, save the setup files for all the instruments used and the application.

If possible, save the waveform on which you are performing the measurement as a .wfm file.

Forward the information to technical support using one of these methods:

E-mail: techsupport@tektronix.com

FAX: (503) 627-5695

ADK Printable Online Help 3

Introduction Technical support

4 ADK Printable Online Help

Getting started ADK overview

ADK overview

The Application Developer Kit (ADK) provides tools for oscilloscope users and third parties to create
custom applications for Tektronix oscilloscopes. ADK provides developers fast access to waveform
data, the ability to add measurements and to develop well integrated applications using Tektronix user
interface controls. ADK also provides developers access to use the oscilloscope license mechanism
to optionally license the application.

ADK toolsets are developed on the .Net 4.0 platform and provide developers a wide range of choices of
development environment including Visual Studio and MATLAB. Users can develop applications using
a variety of software development tools which can interface with .Net 4.0 APIs. ADK toolsets provide
the following functionality:

1.

DataAccess Interface: The DataAccess interface provides the ability to directly access the
oscilloscope waveform data in the fastest way possible. This interface provides read access for all
analog channels and math channels in sample, average and fast-frame modes along with waveform
metadata; the DataAccess interface also provides read access to all digital channels.

With this unique DataAccess interface, the user developed program executes automatically within
the oscilloscope acquisition sequence cycle; meaning when new acquisition data is available the
oscilloscope automatically executes the users program. The oscilloscope acquisition cycle would
allow the user program to complete the operation on the waveform data before starting with the
next acquisition.

This is a relatively different programming paradigm where it enables users better separation of
program functionality related to waveform data operation and other program functionality.

DPOJET Measurement Plug-in: DPOJET measurement plug-in for DPOJET Jitter and Eye
Diagram Analysis enables developers to add user defined standards under the DPOJET standard group
and provides the ability to add new measurements under the user defined standard tab.

The user added measurements to DPOJET are treated the same way as inbuilt DPOJET measurement,
all other functionality such as report generation and results statistics are automatically available for
the user added measurements. (Similar to the DataAccess interface, the user measurement executes
automatically within the oscilloscope acquisition sequence cycle.)

MATH Plug-in: MATH plug-in enables developers to add user defined MATH functions. The user
defined MATH functions are treated the same way as inbuilt MATH functions. (Similar to the
DataAccess interface, the user defined MATH functions execute automatically within oscilloscope
acquisition sequence cycle.)

GUI toolkit: ADK provides access to selective oscilloscope user-interface controls directly in the
Visual Studio development environment. Using these user-interface controls, developers can develop
applications with the identical look and feel as the oscilloscope user-interface. ADK also provides
seamless integration of user developed applications with the oscilloscope user-interface within the
“Analyze” drop-down menu of the TekScope user-interface.

ADK Printable Online Help 5

Getting started What is new in this release

License Interface: Using the license interface developers can use the oscilloscope license mechanism
to optionally license the application. This provides the same functionality (such as free trials), that is
available for Tektronix-licensed applications.

Project Templates: Various Visual Studio project templates are available as part of ADK. These
project templates show usage of ADK toolsets and are integrated with the Visual Studio development
environment. These project templates are expected to serve as a starting point for developers to build
applications. Visual Studio project templates are available for the DataAccess Interface, DPOJET
Measurement plug-in, MATH plug-in, GUI toolkit and License Interface and supported in the Visual
Basic and C# languages.

What is new in this release

The current release replaces the earlier released Beta version of the ADK with the following feature
improvements.

1.

A N

Simplified DataAccess interface with support for On-Demand access.
Simplified DPOJET Measurement plug-in interface.

Added MATH Plug-in support.

GUI application with improved integration with the TekScope user-interface.

Added new VisualStudio templates.

System requirement

ADK is supported on the Tektronix DPO/DSA/MSO 5K/7K/70K series of Real-time oscilloscopes with
the Windows 7 (64-bit) operating system.

Before installing ADK on your oscilloscope, please verify the following software are installed on the
oscilloscope:

Oscilloscope Firmware

® DPOJET lJitter And Eye Diagram Analysis

® Visual Studio 2010 (Professional / Premium / Ultimate edition)

ADK Printable Online Help

Getting started Application directories and usage

Application directories and usage

Following table lists the default directory names and their usage.

Directory path Usage

C:\Program Files\Tektronix\ADK Application installation path and
contains the application files.

<VS path>\Microsoft visual Studio 10.0\Common7\ Includes ADK shipped Project

IDE\Extensions\Tektronix Templates

C:\Users\Public\TektronixX\ADKApps\<AppName> Installation path for TekScope GUI
integrated applications *

C:\Users\Public\Tektronix\Plugins\DPOJET Installation path for DPOJET
measurement plug-in *

C:\Users\Public\Tektronix\Plugins\Math Installation path for MATH plug-in !

1 The installation in the Public folder will make the application available for all users, the application can also be installed in “C:\Users\<current
user>\Tektronix\” which will make the application available only for the current user.

ADK Printable Online Help 7

Getting started Application directories and usage

8 ADK Printable Online Help

Operating basics Basic interfaces

Basic interfaces

This section provides an overview of base element interfaces, classes and enumeration which are
frequently used while developing applications using the Tektronix ADK tool.

INormalizedVector interface
Namespace: Tek.Scope.Support

Assembly: ScopeSupportBase (in ScopeSupportBase.dll)

Properties:
Name Description
i‘&l} Count The number of elements in the array.
i@'l} Data[Int64] The normalized data element at the specified location.
i@'l} Horizontal The horizontal section.
i&I} SourceName Returns the name of the source for this vector.
ﬁ vertical The vertical section.
Methods:
Name Description
¢ Commit Tells the underlying class(es) that this set of
changes is complete. This allows any housekeeping
associated with a consistent state to be done.
[ToArray Returns the data as an array of type double.

IFastFrame interface
Namespace: Tek.Scope.Support

Assembly: ScopeSupportBase (in ScopeSupportBase.dll

Properties:

Name Description
i‘&l} Count The number of elements in the array.
i‘&l} CurrentFrame Current Frame

ADK Printable Online Help 9

Operating basics Basic interfaces

Properties:
Name Description
ﬁ Data[Int64] The normalized data element at the specified location.
ﬁ FrameCount Total number of frames in FastFrame data
E’F Horizontal The horizontal section.
ﬁ SourceName Returns the name of the source for this vector.
E’l?' Vertical The vertical section.
Methods:
Name Description
@ Commit Tells the underlying class(es) that this set of

changes is complete. This allows any housekeeping
associated with a consistent state to be done.

ISettings interface

10

Namespace: Tek.Scope.Support

Assembly: ScopeSupportBase (in ScopeSupportBase.dll)

Properties:
Name Description
ﬁ Names Iterate through symbol names
E’l?' Item[String] Sets/Gets symbols in the table.
ﬁ IsAborting Used to indicate that the current operation should be
aborted.
ﬁ IsEmpty Returns true if the contents are empty.
Methods:
Name Description
Clear Resets Symbol Table to empty.
& contains(string) Returns true if the passed argument is a keyword.

ADK Printable Online Help

Operating basics Basic interfaces

Methods:
Name Description
& contains(String, String) Returns true if the passed arguments are a keyword
and a corresponding value.
% GetNumber(string, String, This method returns the number value associated
DoubTe) with the specified symbol name. If the name does not
exist, then the passed default value is used.
& GetString(string, String, This method returns the string value associated with
String) the specified symbol name. If the name does not
exist, then the passed default value is used.
Readcsv(string) Reads the named CSV file into the current Attribute
L
state.
& writecsv(string) Writes the current state to the named CSV file.

IResult interface
Namespace: Tek.Scope.Support

Assembly: ScopeSupportBase (in ScopeSupportBase.dll)

Properties:

Name Description

ﬁ Begin Returns the begin location.

ﬁ Duration Returns the width of this item.

ﬁ End Returns the end location.

ﬁ Focus Returns the focus of this item. This value must be
between Begin and End.

ﬁ value Value. Typically the results of some calculation. But
if there is not a traditional result, then the Duration is
used.

Methods:

Name Description
CompareTo(Object) Compares the current instance with another object of
the same type.
& Comparevalue(Object) Compare value against the passed object. A return

value of null means the objects were not comparable.

IResultCollection interface

Namespace: Tek.Scope.Support

ADK Printable Online Help 1

Operating basics

12

Assembly: ScopeSupportBase (in ScopeSupportBase.dll)

Basic interfaces

Properties:
Name Description
ﬁ Begin Returns the begin location.
ﬁ:‘ Count Returns the count of items in the collection.
ﬁ Duration Returns the width of this item.
ﬁ End Returns the end location.
ﬁ Focus Returns the focus of this item. This value must be
between Begin and End.
ﬁ HUn1its The units for the horizontal section.
ﬁ Item[Int32] Returns the item at the specified index.
E’F Maximum Returns the maximum value.
ﬁ Mean Returns the average of the Values.
ﬁ Minimum Return the minimum value.
ﬁ Name Accesses the name of this item.
E’l?' PeakToPeak Peak2Peak measurement.
ﬁ SourceName Accesses the source name of this item.
ﬁ Standardbeviation Returns the Standard Deviation.
ﬁ vunits The units for the vertical section.
Methods:
Name Description
Add(Double, Double, DoubTe, Add a value to the collection.
Double)
Add(IResuTt) Add a value of type IResult to the collection.
& Clear() Clear the collection.

ADK Printable Online Help

Operating basics DPOJET Measurement Plug-in

Methods:
Name Description
& commit() Tells the underlying class(es) that this set of
changes is complete. This allows any housekeeping
associated with a consistent state to be done.
% contains(IResult) Check whether the specified IResult item exists in
the collection.
Dispose Performs application-defined tasks associated with
v freeing, releasing, or resetting unmanaged resources.
@ GetEnumerator Allows foreach and ling to work with this interface.

DPOJET Measurement Plug-in

DPOJET Measurement Plug-in interface under Tektronix.Scope.Applications.DpoJit namespace
provides base element function attribute which are consumed by client applications.

To define any measurement as a DPOJET plug-in, the following two steps need to be implemented:

® 1. Define the method attribute as DPOJETMeasurement as shown below, with the optional
StandardName

® 2. The method signature should be as shown below
[DPOJETMeasurement(StandardName = "Custom™)]

public IResultCollection CustomMaxCS(IList<INormalizedVector» inputWFMs, ISettings measSettings, out ResultStatus status)

The measurement added using this plug-in appears in DPOJET under standard tab as shown below. For
more details refer the ADK templates available in VisualStudio under Tektronix.

Jitter and Eye Diagram Analysis Tools Preferences v

Test Point None selected

CustomMax
cs

ADK Printable Online Help 13

Operating basics Using math plugins

Using math plugins

Math plugins extend the current built-in math system on your instrument. When the TekScope
application starts, it scans C:\Users\Public\Tektronix\Plugins\Math and C:\Users\<current user
ID>\Tektronix\Plugins\Math for .NET libraries and loads any tagged functions into the math system. For a
library to load, it must have the word math, meas or plugin in its name. If a plugin library is placed in
one of the folders after the TekScope application has started, the plugin will not be available until the
application is restarted. Plugins are only loaded when TekScope starts up to avoid performance impact.

Once the instrument has started, the plugin is used in the math system like any built in function. For
example, if one of the libraries provides two functions, MyAdd and MyMultiply, each of which takes two
vector inputs, the following math definitions are valid:

= Math1=MyAdd(Chl, Ch2)

® Math1=MyMultiply(Ch1+Ch2, Ch3)

= Math2=MyAdd(Refl, Mathl)

= Mathl1=MyMultiply(Ch1, Ch2)+Inv(Ch3)
= Math1=MyMultiply(Avg(Ch1), Ch2)

The math system generates standard syntax errors if there is an issue with a math equation using a plugin,
such as a missing parenthesis. If there is an error with the plugin itself, math reports a plugin specific error.
This may be that the plugin is not valid because it has mismatched input and output types or that an
argument specified in the equation does not match the type expected by the plugin (for example, a string
was expected but a FastFrame waveform was supplied).

Writing math plugins

14

You can write plugins in any .NET language. The following examples use C#. When writing a plugin,
reference the ScopeSupportBase.dll and TekScriptingEngine.dll system assemblies. Additionally, tag all
plugins with the C# attribute [Math] if they are to be loaded into the system.

Six different classes are used inside plugins: [NormalizedVector, [FastFrame, IWaveformDB, [String,
ISettings and IRange. The first two, INormalizedVector and [FastFrame, are waveform vector types used
by the instrument. The third, IWaveformDB is a pixmap waveform. [Strings, [Settings and IRange are
used to pass additional information into a plugin.

Waveform types

All waveform classes contain a member called SourceName. This is a string that contains the symbol
name of the waveform source. If the source is a channel, math or reference waveform, the SourceName
will be Ch<x>, Math<n> or Ref<n>, respectively. If the waveform is an intermediate, the SourceName

ADK Printable Online Help

Operating basics Writing math plugins

will be Intermediate0, if it is the output waveform or Intermediate<n> if it’s an input vector, where <n>
corresponds to which argument it is. Examples of intermediates are:

B Math1=MyAdd(Chl, Ch2)*Ch3: The output of MyAdd is an intermediate because it still needs to
be multiplied by Ch3 before being put into Math1l. The SourceName for the output waveform will
be Intermediate0.

B Math1=MyAdd(Ch1*Ch2, Ch3): The first input is an intermediate because two channels are being
multiplied together. Its SourceName will be Intermediatel.

B Math1=MyAdd(Chl, Ch2/Ch3): The second input is an intermediate because two channels are being
divided. Its SourceName will be Intermediate2.

INormalizedVector is the basic waveform type used by TekScope. The length of the vector is found in the
Count member of the class. Array indices are used to access values inside the vector:
INormalized Vector output;
INormalized Vector inputl;
for (long i = 0; i < inputl.Count; i++)
output[i] = inputl][i];

IFastFrame is built on top of INormalizedVector. An [FastFrame is a grouping of INormalized Vectors.
IFastFrames are generated when FastFrame is enabled on the instrument. The number of frames is stored
in the member called FrameCount. You can iterate through the frames by setting the CurrentFrame (note:
frames are 1 counted so you should iterate from 1 to FrameCount). Once you set the CurrentFrame, you
use the [FastFrame the same as an INormalized Vector.
[FastFrame output;
[FastFrame inputl;
[FastFrame input2;
for (long f = 1; f <= output.FrameCount; f++)
{
inputl.CurrentFrame = f;
input2.CurrentFrame = f;
output.CurrentFrame = f;

for (long i = 0; 1 < output.Count; i++)
output[i] = inputl[i] * input2[i];
H

The final waveform type is [IWaveformDB (waveform database or DPO data). This type essentially tracks
hits in a visual manner. The higher the value that is stored into a point relative to the other values stored,
the brighter the color will be. Unlike an INormalizedVector or an [FastFrame, the [IWaveformDB goes
both horizontally and vertically across the screen. The horizontal length is in Horizontal.Count and the
vertical height is in Vertical.Count. To access a point inside the IWaveformDB, use double array indices
where the vertical position comes before the horizontal position:

IWaveformDB output;

long hCount = output.Horizontal.Count;

long vCount = output. Vertical.Count;

for (long hh = 0; hh < hCount - 1; hh++)

{

Parallel.For(0, vCount, vv =>

ADK Printable Online Help 15

Operating basics Writing math plugins

16

{

output[vv, hh] = output[vv, hh + 1];
1)
H

If the output type of a plugin is IWaveformDB, when the plugin is called the output waveform is populated
with the values the plugin returned the last time it was called. If this is the first time the plugin was called,
all of the values inside the IWaveformDB will be zero (displays as clear).

The advanced user can change the vertical scale and position, as well as the horizontal scale and spacing by
setting Vertical.Scale, Vertical.Position, Horizontal.Scale, and Horizontal.Spacing in the IWaveformDB.

IString

A plugin may use an unlimited number of IStrings as input. An IString is simply a string and is used to
pass meta data or additional information into a plugin.

ISettings: scope settings

You can access information about instrument settings through ISettings. Settings for the math target, as
well as the input and output waveforms, are put into the dictionary. However, if the waveform is an
intermediate, no setting information is available. Examples of intermediates are:

B MATHI=Add(Ch1*Ch2, Ch3): Ch1*Ch2 is an intermediate
® MATHI1=Add(Chl, Ch2)*Ch3: The output of Add is an intermediate

To look up information in ISettings, you need to know the waveform name. For input or output waveforms,
this is put into the SourceName field. This is either Ch<n>, Math<n>, Ref<n> or Intermediate<n> if it is a
channel, math, reference, or intermediate waveform respectively. To find the name of the target math, look
up MathTarget in [Settings (a string of the form Math<n> is returned).

Once you have the waveform name, you can look up the following information:
m Vertical scale (“VScale”)

B Vertical offset (““VOffset”)

= Vertical position (“VPosition”)

B Vertical units (“VUnits”)

m Horizontal scale (“HScale”)

® Horizontal offset (“HOffset”)

B Horizontal position (“HPosition”)

B Horizontal units (“HUnits”)

Additionally, the following information about the target math is available:
® LPCT

. MPCT

ADK Printable Online Help

Operating basics Writing math plugins

. HPCT
® HYSTPCT

The recommended method for looking up information is to use the [Settings::GetNumber(string
sourceName, string name, double defaultValue) and ISettings::GetString(string sourceName, string name,
double defaultValue) functions. For example, to get the name of the target math:

string mathTarget = settings.GetString("", "mathTarget", "");

Or to get the vertical scale for an input:
double scale = settings.GetNumber((!string. IsNullOrEmpty(input1.SourceName) ?
inputl.SourceName : ""), "vscale", double.NaN);

Note: Strings are not case sensitive, so VSCALE and vscale return the same information.

You can also use the array operators to look up information, but if the information is not in the dictionary
you may end up with null objects:

string mathTarget = settings["mathTarget"];

double scale = settings["chl.vscale"];

This may be useful for debug purposes however.

IRange: gating information

Currently, the IRange parameter will always be null. It is in place to support future features.

Plugin rules

Plugins require at least one and at most two vector inputs (either INormalized Vector or IFastFrame). If two
vector inputs are used by the plugin, they both must be the same type. Additionally, plugins may take an
unlimited number of IStrings as input. When using [String inputs, it is important to remember that the
entire math equation, when typed into the editor, is limited to 128 characters.

Plugins can generate an INormalized Vector, [FastFrame or IWaveformDB waveform as output. If the
output type is INormalized Vector, the vector input(s) must also be INormalizedVector. For IFastFrame and
IWaveformDB outputs, the inputs can be INormalizedVector or [FastFrame.

If FastFrame is turned off and the plugin takes IFastFrames as input, the plugin is given [FastFrames that
consist of only one frame. How the plugin behaves when FastFrame is turned on depends on the output
waveform type. If the output is an INormalized Vector, which takes only INormalizedVector as input, the
plugin is called once per frame and the math system handles iterating through all of the frames. If the
plugin produces [FastFrame or [IWaveformDB it is called once per FastFrame acquisition. When the plugin
takes as input an [FastFrame, it is given all of the frames at once. If the plugin takes an INormalizedVector
as input, the plugin will only see the first frame which is put into the INormalizedVector. The rest of the
frames in the FastFrame are not seen by the plugin.

ADK Printable Online Help 17

Operating basics Writing math plugins

Summary of valid plugin signatures and behavior

Output Type Vector Input Type FastFrame Off FastFrame On
INormalizedVector INormalizedVector Called once per acq Called once per frame
IFastFrame INormalizedVector Called once per acq First frame put into

INormalizedVector

IFastFrame IFastFrame Called once per acq; Only Called once per FastFrame
contains one frame

|IWaveformDB INormalizedVector Called once per acq First frame put into
INormalizedVector

|IWaveformDB IFastFrame Called once per acq; Only Called once per FastFrame
contains one frame

Example plugins

If the Application Developer Kit has been installed on the instrument, example plugins can be found in
Microsoft Visual Studio. When you create a new project, choose Visual C#->Tektronix->Math to access
the examples.

Create a plugin

To create a plugin, you need to use either one of our Visual Studio templates or create a new project using
the .NET language of your choice. To create a C# plugin from scratch, you first need to create a new, empty
C# project. Once you create your project, add references to ScopeSupportBase, TekScriptingEngine,
System.Data, System.Data.DataSequence, System. XML and System.Xml.Ling. In your code, use System,
System.Collections.Generic, System.Ling, System.Text, and Tek.Scope.Support.

There are no requirements for the name of the class or namespace the plugins use. In this example
the namespace is MyMathPlugins and the class name is MyMath. The plugin function is a public,
static function inside the class with the math attribute. We call our plugin Add, and it takes two
INormalizedVectors as input and produces an INormalized Vector.

namespace MyMathPlugins

{
class MyMath

1
/l Add(<wfm>, <wfm>):
// This plugin adds two INormalized Vector inputs
[Math]

public static void Add(ISettings settings, [Range gate, INormalized Vector output, INormalized Vector
inputl, INormalizedVector input2)

{
//' We only want to add up to the shorter input length

18 ADK Printable Online Help

Operating basics MATLAB custom functions

if (inputl.Count < input2.Count)

{
output.Count = inputl.Count;
output.Horizontal.Spacing = inputl.Horizontal.Spacing;

output.Horizontal.ZeroIndex = inputl.Horizontal.Zerolndex;

}

else

{
output.Count = input2.Count;
output.Horizontal.Spacing = input2.Horizontal.Spacing;

output.Horizontal.ZeroIndex = input2.Horizontal.Zerolndex;

}
// Add two inputs together

for (long i = 0; i < output.Count; i++)

output[i] = inputl[i] + input2[i];

}

When compiling the project, make sure the target platform is Any CPU. Once the DLL is compiled
(release or debug, both work), it should be placed in the appropriate directory on the instrument. Restart
the instrument application, and the plugin is ready to use like any existing math operator.

MATLAB custom functions

The Custom Analysis Interface for use with MATLAB provides two options for writing MATLAB custom
analysis functions: a basic function interface and a more advanced class-based interface. Both types are
available in demo form on the instrument in C:\Users\Public\Tektronix\Plugins\Math\MATLAB.

Using the basic Function interface to create MATLAB functions

The function interface uses a simple signature: function [output | = exampleProcessingFunction(
firstTime, varargin) Your function should take two inputs: a Boolean that indicates whether or not this is
the first time the function has been called and a variable length array. Put the results that you want the
instrument to display into the output variable of the same length as the input array.

ADK Printable Online Help 19

Operating basics MATLAB custom functions

If this is the first time the function has been called as part of the math expression, firstTime is true. In this
case, the varargin array consists of the record length and the sample rate:

recordLength = varargin{1};
sampleRate = varargin{2};

and the output is expected to be true:
output = true;

If you have any one time processing, such as filter creation, do this when firstTime is true. If you want

to have variables from a previous execution of the function available, you should mark the variables
persistent. See the examples for more information. Note that persistent variables are automatically cleared
before the first execution of the function.

If this is not the first time the function has been called, then firstTime is false and varargin will consist of the
waveform inputs. The math expression may have one or two waveform inputs to the MATLAB function:

inputl = varargin{1};

if numel(varargin) == 2
input2 = varargin{2};

end

From here you can do any computations you want and put the results into the output. Your MATLAB
function can use any features available in MATLAB or installed toolboxes to perform its calculations.
Note that the output must have the same length as the inputs. If your output vector is shorter, zero out
the remaining points.

Using a Class to create MATLAB functions

An dvanced user can create a MATLAB custom analysis function by subclassing
instrument.integration.AlgorithmDefinition. The waterfall.m class shows an example of this type of
custom analysis function. This is more complex than using a function but allows more control of behavior
than the basic function capability. By using a subclass, you can implement custom tear-down behaviors,
such as closing plots automatically when an analysis function is no longer being called.

Your class should be a subclass of instrument.integration. AlgorithmDefinition:
classdef myClass < instrument.integration. AlgorithmDefinition

There are four methods your class may need to implement: a constructor, a destructor, a process, and a
stopProcessingHook. The default destructor and stopProcessingHook from the superclass may be sufficient
for your class. However, at minimum you need to implement a constructor and the process function:

classdef myClass < instrument.integration. AlgorithmDefinition
methods
function obj = myClass(sampleRate,pointsPerRecord)
obj@instrument.integration. AlgorithmDefinition(sampleRate,pointsPerRecord);
end

function [result] = process(obj,varargin)

20 ADK Printable Online Help

Operating basics DataAccess public interface

result = varargin{1};
end
end
end

The constructor is called the first time the analysis function is used in a specific math expression on the
instrument. Here anything that requires setup before processing data, such as plots, should be configured.
The parent constructor can be called from your custom construct if necessary (the constructor for
AlgorithmDefinition sets up some basic settings information about the instrument).

The process function is the main workhorse of the class. This function computs results and returns data to
the instrument. Like the custom analysis functions created using the basic function interface, the length of
the results returned by your process function should match the length of the input.

The stopProcessingHook function is called when the analysis function is no longer in use by the
instrument. This may happen when you edit or clear a math function, or in other situations when the
instrument math system expects that the state should be reset. For example, if your analysis function is
displaying a plot, this would be the time to close the plot.

Finally, the destructor is called when the analysis function is no longer in use. Typically you call the
stopProcessingHook function from here to aid in cleanup.

DataAccess public interface

The Tektronix.Scope.Support namespace contains classes and interfaces which allow an application
to read and write the data to the base oscilloscope under Win 7 64 bit operating system.

The following table shows the classes and interfaces available in the Tektronix.Scope.Support

namespace.
Classes:
Name Description
& TekScope Provides the instance of the Data Source for clients to
& connect.
Interfaces:
Name Description
- ITekScopeDataSource Provides functionality to allow clients to connect to the
oscilloscope to access the data.
o ITekScopeDataAccess This interface allows the client to access the data

available with the oscilloscope. This interface is
available to the clients in the callback function to access
the data.

ADK Printable Online Help 21

Operating basics

DataAccess public interface

Interfaces:
Name Description
o ITekScopeData Provides access to meta-data of the waveform data
produced by the oscilloscope.
o INormalizedvector Provides access to waveform data.
- IFastFrame Provides access to Fast Frame data.
Delegates:
Name Description
+4 DataAvailableForAccess Represents the signature of the method which is invoked
4 for the clients to access the data from the Data Source.
TekScope Class

Namespace: Tektronix.Scope.Support

Assembly: TekScopeDataNetInterfaces (in TekScopeDataNetInterfaces.dll)

Methods:
Name Description
GetDatasource Returns ITekScopebatasSource instance for
vsS connecting with Data Source.
v S GetDataSourceImmediate Returns ITekScopebataSource instance for

connecting with Immediate Data Source.

ITekScopeDataSource interface

Namespace: Tektronix.Scope.Support

Assembly: TekScopeDataNetInterfaces (in TekScopeDataNetInterfaces.dll)

Methods:

Name

Description

Connect

Method to connect to the Data store.
Return true when connection successful.

Disconnect

Method to Disconnect from Data Source.

ReinitiateDataAccess

Method to request a callback to access the data from
the data source.

22

ADK Printable Online Help

Operating basics License interface

ITekScopeDataAccess interface
Namespace: Tektronix.Scope.Support

Assembly: TekScopeDataNetInterfaces (in TekScopeDataNetInterfaces.dll)

Methods:
Name Description
. GetData Method to access the data available in Data Source.
Return Value
ITekScopeData

Returns non null value if data is available.

ITekScopeData interface
Namespace: Tektronix.Scope.Support

Assembly: TekScopeDataNetInterfaces (in TekScopeDataNetInterfaces.dll)

Properties:

Name Description
i&I} canwrite Returns true if the data can be modified
T DataCounter Returns long value. If this value is greater than the last
M—'Eb'rl time the code queried, it denotes new data.
= IsDataNew Returns true if the data is new. Always check this flag
M—@f before accessing the data.

ITekScopeData interface can be type cast to INormalizedVector, IFastFrame or IDigitalEvents to access
the waveform data.

License interface

License interface under Tektronix.Scope.License namespace provides the following base element
interfaces, classes and enumeration which are consumed by client applications.

Classes:

Name Description

ITektronixLicenseFactory Provides static factory method for ITektronixLi-
Vd-g cense Interface.

ADK Printable Online Help 23

Operating basics License interface
Interfaces:
Name Description
o ITektronixLicense Provides basic interface for Tektronix license.
5 ITektronixLicenseDetails Provides basic interface for specifying details of
Tektronix license.
-0 ITekScopeLicense Provides detailed interface for oscilloscope license.
Inherits from ITektronixLicense interface.
- ITekScopelLicenseDetails Provides detailed interface for specifying
details of oscilloscope license. Inherits from
ITektronixLicenseDetails interface.
Delegates:
Name Description
-4 LicenseStatusChangeDelegate Represents the method that will handle
=) LicenseStatusChangeNotifier event
raised by ITekScopeLicense.
Enumerations:
Name Description
E= LicenseType Specifies license type.
2 Optionstatus Specifies license option status.
=F
A LicenseAcquireStatus Specifies license acquire status.
A LicenseReleaseStatus Specifies license release status.

ITektronixLicenseFactory Class

24

Namespace: Tektronix.Scope.License

Assembly: TekScopeLicenseNetlInterface (in TekScopeLicenseNetInterface.dll)

Methods:

Name

Description

v S

getITektronixLicenseInterface

(string oOptionName)

Returns ITektronixLicense instance for specified

OptionName.

ADK Printable Online Help

Operating basics License interface

ITektronixLicense interface
Namespace: Tektronix.Scope.License

Assembly: TekScopeLicenseNetlnterface (in TekScopeLicenseNetInterface.dll)

Properties

Name Description

r? LicenseDetails Gets ITektronixLicenseDetails interface.

ITektronixLicenseDetails interface
Namespace: Tektronix.Scope.License

Assembly: TekScopeLicenseNetlnterface (in TekScopeLicenseNetInterface.dll)

Properties:

Name Description
ﬁ OptionName Gets Option Name.
ﬁ Type Gets License Type.

ITekScopeLicense interface
Namespace: Tektronix.Scope.License
Inherits from: ITektronixLicense

Assembly: TekScopeLicenseNetlnterface (in TekScopeLicenseNetInterface.dll)

Properties:
Name Description
ﬁ AcquirelLicenseStatus Gets License Acquire Status.
ﬁ AcquireLicenseStatusverbose Gets License Acquire Status Verbose details.
ﬁ OptionStatus Gets Option Status.
ﬁ OoptionstatusVerbose Gets Option Status Verbose details.

ADK Printable Online Help

25

Operating basics License interface

Properties:
Name Description
ﬁ ReleaselLicenseStatus Gets License Release Status.
,f i,, ReleaseLicenseStatusverbose Gets License Release Status Verbose details.
Methods:
Name Description
% AcquireLicense Method to acquire the license.
® ReleaseLicense Method to release the license.
Events:
Name Description
LicenseStatusChangeNotifier Occurs when Option Status changes.

ITekScopeLicenseDetails interface
Namespace: Tektronix.Scope.License
Inherits from: ITektronixLicenseDetails

Assembly: TekScopeLicenseNetlnterface (in TekScopeLicenseNetInterface.dll)

Properties:

Name Description

ﬁ OoptionNumber Gets Option Number.

LicenseStatusChangeDelegate delegate
Namespace: Tektronix.Scope.License

Assembly: TekScopeLicenseNetInterface (in TekScopeLicenseNetInterface.dll)

LicenseType enumeration
Namespace: Tektronix.Scope.License

Assembly: TekScopeLicenseNetlnterface (in TekScopeLicenseNetInterface.dll)

26 ADK Printable Online Help

Operating basics

License interface

Members:
Name Description
Custom Reserved for future, not supported.
ScopeFixedoption Fixed oscilloscope option.

ScopeFloatingOption

Floating oscilloscope option.

FlexLM

Reserved for future, not supported.

OptionStatus enumeration

Namespace: Tektronix.Scope.License

Assembly: TekScopeLicenseNetlnterface (in TekScopeLicenseNetInterface.dll)

Members:
Name Description
Available Available for permanent, unconditional.
AvailableLimited Available but limited, such as evaluation period, free

trials, time limited and others.

Unavailable

Option either not enabled or evaluation expired.

LicenseAcquireStatus enumeration

Namespace: Tektronix.Scope.License

Assembly: TekScopeLicenseNetlnterface (in TekScopeLicenseNetInterface.dll)

Members:
Name Description
success License acquire operation successful.
Limited License acquire operation successful, typically under
OptionStatus AvailableLimited.
Failed License acquire operation failed, typically under

OptionStatus Unavailable.

Uninitialized_OR_NotAcquired

Initial state or before license is acquired.

LicenseReleaseStatus enumeration

Namespace: Tektronix.Scope.License

Assembly: TekScopeLicenseNetlInterface (in TekScopeLicenseNetInterface.dll)

ADK Printable Online Help

27

Operating basics GUI Toolkit

Members:
Name Description
success License release operation successful.
Failed License release operation failed, typically under

OptionStatus Unavailable.

Uninitialized_OR_NotReleased Initial state or before license is released.

GUI Toolkit

Following TekScope user controls are published as part of ADK and are integrated with Visual Studio
development environment.

Table 2: GUI Toolkit

Control name Image of control Use of control
Clear The green button is an action button used for specific instances:
@ E Recalc
= Single
AppSequencerControl Sinale = RN

ektronix blue colored blank panel

ControlWindowPanel

@ Shows an On state of a setting.
TekCheckButton - -

P\ Supports multiple selections.

@ O Supports an exclusive selection. Only one of a set of radio

I buttons may be the selected button.
Best used when there are only a limited number of selections

TekRadioButton possible- otherwise a dropdown makes better use of the Ul

real estate space.
There is always one button of a set that is selected.

By default, the first shown of a collection of radio buttons is
selected.

28 ADK Printable Online Help

Operating basics

Table 2: GUI Toolkit (cont.)

Control name

Image of control

GUI Toolkit

Use of control

TekPushButton

Shows an Off state of a setting.

Used to execute an action to take, such as “Save”, or to exit
out of a Ul (OK/Cancel are used if a change can be made while
Close is used if no change can be made/lost).

Special instance of the Blue Button which opens up a Windows
File Browser.

Special instance of the Blue Button which navigates either to a
previous or to the next Ul in a flow-like set of Uls.

Special instance of the Blue Button which signifies a Clear
action.

Is used to navigate to an OCW.

Special instance of an aqua button which navigates to a plot Ul.

TekDropDown

Supports an exclusive selection. Only one of the options in the
dropdown options list may be selected.

Makes the best use of Ul real estate space, but the other
options are not visible to the user until they click the dropdown.
There is always one option of a set that is selected, and by
default, the first shown. To force a user to specify an option,
the default selection could be “Please Select...”.

TeklInputSelector

Channels

Specific instance of an internal CW tab that supports selection
of sources.

TekPanel

Tektronix light blue colored blank panel with orange colored
border.

ADK Printable Online Help

29

Operating basics Project templates

Table 2: GUI Toolkit (cont.)

Control name Image of control Use of control
TekTab Tab driven Ul, typically used with “ControlWindowPanel” or
“TekPanel”

TekDisplay Used for numeric or string input / output (as read only)

TekDi
A, A

TekTextBox Text box, is used for string input / output (as read only)
TekEdit = Similar to TekTextBox

TekLabel Label

Project templates

Various Visual Studio project templates are available as part of ADK. These project templates show usage
of ADK toolsets and are integrated with the Visual Studio development environment. These project
templates are expected to serve as a starting point for developers to build applications. Visual Studio
project templates are available for the DataAccess Interface, DPOJET Measurement plug-in, MATH
plug-in, GUI toolkit and License Interface and are supported in Visual Basic and C# languages.

30 ADK Printable Online Help

Operating basics

Recent Templates

[.NI:—I' Framewaork 4 v]Scrrllrg,l: [Default

Solution name:

Installed Templates
i i - g Blank LCW Visual Basic
4 Visual Basic —
Windows
Web BlankLCW License Visual Basic
Office
Cloud Blank OCW Visual Basic
Extensibility
Reporting Custom Standard Visual Basic
SharePoint =
Silverlight Custom Standard Advanced Visual Basic
.
DataAccess — Notification Digital Waveform Console Visual Basic
DataAccess — On Demand
EE?JET FastFrame Waveform Console Visual Basic
HelloWaveForm —
. Helle WaveForm Visual Basic
License
Math
Test License Visual Basic
WCF
Waorldflow - Math Plugin Advanced Visual Basic
4 m 3
Math Plugin Basic Visual Basic
(|| Mame: BlankLCW2
: Location: D:\UsershasanglikiDocuments\Visual Studio 20104 Projects), -
Solution: [Create new solution V]

BlankLCW2

— Type: Visual Basic

Project templates

| Search Installed Templates

A project for creating Tektronix ADK
application

m

Create directory for solution

ADK Printable Online Help

31

Operating basics

32

Recent Templates
Installed Templates

Visual Basic
4 Visual C2

Windows
Web
Office
Cloud
Extensibility
Reporting
SharePoint
Silverlight

4 Tektronix

DataAccess — Motification
Datafccess - On Demand

DPOIET
GUI

HelleWaveForm

License
Math
Test
WCF

[.NI:T Framework 4

7] Sort by: [Default

m

MName:

Location:
Solution:

Solution name:

<Enter_name=

D:\Usershasanglik\DocumentstVisual Studio 20104Projects,

g Blank LCW

ElankLCW License

Elank OCW

Custom Standard

Custom Standard Advanced

Digital Waveform Console

FastFrame Waveform Console

Hello WaveFarm

License

Math Plugin Advanced

Math Plugin Basic

Visual C#
Visual C#
Visual C#
Visual C#
Visual C#
Visual C2
Visual C2
Visual C#
Visual C#
Visual C#

Visual C#

m

<Enter_name>

Project templates

| Search Installed Templates

Type: Visual C#

A project for creating Tektronix ADK

application

- Browse...

Create directory for solution

ADK Printable Online Help

Index

A

Application directories and
usage, 7

B

Basic interfaces, 9

C

Class
ITektronixLicenseFactory, 24
TekScope, 22

Conventions, 2

D

DataAccess public interface, 21
Delegate
LicenseStatusChangeDele-
gate, 26
Documentaiton, 1
DPOJET measurement
plug-in, 13

E

Enumeration
LicenseAcquireStatus, 27
LicenseReleaseStatus, 27
LicenseType, 26
OptionStatus, 27

G

Getting started, 5
GUI Toolkit, 28

IFastFrame interface, 9
INormalizedVector interface, 9
Interface

DataAccess public, 21

ADK Printable Online Help

IFastFrame, 9
INormalizedVector, 9
IResult, 11
IResultCollection, 11
[Settings, 10
ITekScopeData, 23
ITekScopeDataAccess, 23
ITekScopeDataSource, 22
ITekScopeLicense, 25
ITekScopeLicenseDetails, 26
ITektronixLicense, 25
ITektronixLicenseDetails, 25
License, 23
IResult interface, 11
IResultCollection interface, 11
ISettings interface, 10
ITekScopeData interface, 23
ITekScopeDataAccess
interface, 23
ITekScopeDataSource
interface, 22
ITekScopeLicense interface, 25
ITekScopeLicenseDetails
interface, 26
ITektronixLicense interface, 25
ITektronixLicenseDetails
interface, 25
ITektronixLicenseFactory
class, 24
ITektronixLicenseFactory
Class, 24

L

License interface, 23
LicenseAcquireStatus
enumeration, 27
LicenseReleaseStatus
enumeration, 27
LicenseStatusChangeDelegate
delegate, 26
LicenseType enumeration, 26

Index

Math plugins
using, 14
writing, 14

N

New in this release, 6

0]

Online help, 1

using, 1
OptionStatus enumeration, 27
Overview, 5

P
Plug-in

DPOJET measurement, 13
Project templates, 30

S

System requirements, 6

.

technical support, 3
Technical support, 3
TekScope class, 22
Templates, 30

U

User manual, 1

33

	toc
	Introduction
	Documentation
	Using online help
	General help functions

	Conventions
	Technical support

	Getting started
	ADK overview
	What is new in this release
	System requirement
	Application directories and usage

	Operating basics
	Basic interfaces
	INormalizedVector interface
	IFastFrame interface
	ISettings interface
	IResult interface
	IResultCollection interface

	DPOJET Measurement Plug-in
	Math Plugins
	Using math plugins
	Writing math plugins
	MATLAB custom functions
	Using the basic Function interface to create MATLAB functions
	Using a Class to create MATLAB functions

	DataAccess public interface
	TekScope Class
	ITekScopeDataSource interface
	ITekScopeDataAccess interface
	ITekScopeData interface

	License interface
	ITektronixLicenseFactory Class
	ITektronixLicense interface
	ITektronixLicenseDetails interface
	ITekScopeLicense interface
	ITekScopeLicenseDetails interface
	LicenseStatusChangeDelegate delegate
	LicenseType enumeration
	OptionStatus enumeration
	LicenseAcquireStatus enumeration
	LicenseReleaseStatus enumeration

	GUI Toolkit
	Project templates

